BIOCHEMISTRY A Short Course

SECOND EDITION

JOHN L. TYMOCZKO JEREMY M. BERG LUBERT STRYER

Biochemistry A SHORT COURSE

Second Edition

John L. Tymoczko Jeremy M. Berg Lubert Stryer

W.H. Freeman and Company, New York

Publisher: Kate Ahr Parker Associate Director of Marketing: Debbie Clare Developmental Editor: Anna Bristow Media and Supplements Editor: Amanda Dunning Photo Editor: Christine Buese Photo Researcher: Ramon Rivera Moret Cover Designer: Vicki Tomaselli Interior Designer: Patrice Sheridan Senior Project Editor: Georgia Lee Hadler Manuscript Editor: Patricia Zimmerman Illustrations: Jeremy Berg, Gregory Gatto, Adam Steinberg, and Network Graphics Illustration Coordinator: Janice Donnola Production Manager: Paul Rohloff Preparé Inc. Composition: Printing and Binding: Quad Graphics Inc.

Library of Congress Control Number: 2011936989

ISBN: 1-4292-8360-2 ISBN-13: 978-1-4292-8360-1

© 2013, 2010 by W. H. Freeman and Company

Printed in the United States of America First printing

W.H. Freeman and Company 41 Madison Avenue New York, NY 10010 Houndmills, Basingstoke RG21 6XS, England www.whfreeman.com

To our teachers and students

About the Authors

John L. Tymoczko is Towsley Professor of Biology at Carleton College, where he has taught since 1976. He currently teaches Biochemistry, the Metabolic Basis of Human Disease, Oncogenes and the Molecular Biology of Cancer, and Exercise Biochemistry and co-teaches an introductory course, Energy Flow in Biological Systems. Professor Tymoczko received his B.A. from the University in Chicago in 1970 and his Ph.D. in Biochemistry from the University of Chicago with Shutsung Liao at the Ben May Institute for Cancer Research in 1973. He then held a postdoctoral position with Hewson Swift of the Department of Biology at the University of Chicago. The focus of his research has been on steroid receptors, ribonucleoprotein particles, and proteolytic processing enzymes.

Jeremy M. Berg received his B.S. and M.S degrees in Chemistry from Stanford University (where he did research with Keith Hodgson and Lubert Stryer) and his Ph.D. in Chemistry from Harvard with Richard Holm. He then completed a postdoctoral fellowship with Carl Pabo in Biophysics at Johns Hopkins University School of Medicine. He was an Assistant Professor in the Department of Chemistry at Johns Hopkins from 1986 to 1990. He then moved to Johns Hopkins University School of Medicine as Professor and Director of the Department of Biophysics and Biophysical Chemistry, where he remained until 2003. From 2003 to 2011, he served as Director of the National Institute of General Medical Sciences at the National Institutes of Health. In 2011, he moved to the University of Pittsburgh where he is Associate Senior Vice Chancellor for Science Strategy and Planning and a faculty member in the Department of Computational and Systems Biology. He is a recipient of the American Chemical Society Award in Pure Chemistry (1994), the Eli Lilly Award for Fundamental Research in Biological Chemistry (1995), the Maryland Outstanding Young Scientist of the Year (1995), the Harrison Howe Award from the Rochester Section of the American Chemical Society (1997), the Howard Schachman Public Service Award from the American Society for Biochemistry and Molecular Biology (2011), and the Public Service Award from the American Chemical Society (2011). He is a member of the Institute of Medicine of the National Academy of Sciences and a Fellow of the American Association for the Advancement of Science. While at Johns Hopkins, he received the W. Barry Wood Teaching Award (selected by medical students), the Graduate Student Teaching Award, and the Professor's Teaching Award for the Preclinical Sciences.

Lubert Stryer is Winzer Professor of Cell Biology, Emeritus, in the School of Medicine and Professor of Neurobiology, Emeritus, at Stanford University, where he has been on the faculty since 1976. He received his M.D. from Harvard Medical School. Professor Stryer has received many awards for his research on the interplay of light and life, including the Eli Lilly Award for Fundamental Research in Biological Chemistry, the Distinguished Inventors Award of the Intellectual Property Owners' Association, and election to the National Academy of Sciences and the American Philosophical Society. He was awarded the National Medal of Science in 2006. The publication of his first edition of *Biochemistry* in 1975 transformed the teaching of biochemistry.

Preface

As human beings, we are adept learning machines. Long before a baby learns Athat she can change a sheet of paper by crumpling it, she is absorbing vast amounts of information. This learning continues throughout life in myriad ways: learning to ride a bike and to take social cues from friends; learning to drive a car and balance a checkbook; learning to solve a quadratic equation and to interpret a work of art.

Much of learning is necessary for survival, and even the simplest organisms learn to avoid danger and recognize food. However, human beings are especially gifted in that we also acquire skills and knowledge to make our lives richer and more meaningful. Many students would agree that reading novels and watching movies enhances the quality of our lives because we can expand our horizons by vicariously being in situations that we would never experience, reacting sympathetically or unsympathetically to characters who remind us of ourselves or are very different from anyone we have ever known.

Strangely, at least to us as science professors, science courses are rarely thought of as being enriching or insightful into the human condition. Larry Gould, a former president of Carleton College, was also a geologist and an arctic explorer. As a scientist, teacher, and administrator, he was very interested in science education especially as it related to other disciplines. In his inaugural address when he became president he said "Science is a part of the same whole as philosophy and the other fields of learning. They are not mutually exclusive disciplines but they are independent and overlapping." Our goal was to write a book that encourages students to consider biochemistry in this broader sense, as a way to enrich their understanding of the world.

Biochemistry in Context

All of biochemistry, esoteric as it may seem in isolation, can be understood in a context that is relevant to the student. We emphasize these connections throughout the book.

New to this Edition

This second edition takes into account recent discoveries and advances that have changed how we think about the fundamental concepts in biochemistry and human health. Particular attention has been paid to the following topics:

- The **metabolic basis of cancer** and the role of glycolysis in cancer (Chapters 16 and 18)
- The **biochemical roles of glycoproteins** (Chapter 10)
- **Recombination in DNA repair** (Chapter 35)
- **Quantitative PCR** (Chapter 41)

New sections are identified by **NEW** in the detailed table of contents, starting on page xvii.

Experimental Techniques

In this new edition, our coverage of experimental techniques has been updated, expanded, and included in the printed textbook. Chapter 5, Techniques in Protein Biochemistry, and Chapter 41, Immunological and Recombinant DNA Techniques, explore important techniques used by biochemists in the past as well as new technologies with which biochemists make discoveries in present-day laboratories.

Metabolism in Context: Diet and Obesity

New information about the role of leptin in hunger and satiety has greatly influenced how we think about obesity and the growing epidemic of diabetes. In Metabolism in Context sections in this edition, we cover the integration of metabolism in regard to diet and obesity. By showing how the products of one pathway affect or are affected by others, we take students back to the big picture of biochemistry. Students see that the pathways that they are studying at the moment do not exist in isolation; rather, they work in concert with all of the other pathways that they have already studied. With examples of the relation between metabolic control and obesity, cancer, and exercise, the connection between life and biochemistry is made even more readily apparent. Metabolism of all biomolecules is tied together in:

- Insulin Signaling Regulates Metabolism (Chapter 13)
- Cell Signaling Facilitates Caloric Homeostasis (Chapter 14)
- Precursors Formed by Muscle Are Used by Other Organs (Chapter 17)
- Glycogen Breakdown and Synthesis Are Reciprocally Regulated (Chapter 25)
- Fatty Acid Metabolism Is a Source of Insight into Various Physiological States (Chapter 27)
- Ethanol Alters Energy Metabolism in the Liver (Chapter 28)

In the Clinical Insights, students see how the concepts most recently considered affect an aspect of a disease or its cure. By exploring biochemical concepts in the context of a disease, students learn how these concepts are relevant to human life and what happens when biochemistry goes awry. Some examples of the questions that we ask about human health throughout the book include:

- Why do some people get stomach aches from drinking milk? (p. 285)
- In what ways are cancer and exercise training biologically similar? (p. 292)
- What happens when nucleotide metabolism is disrupted? (p. 568)
- How do cataracts result from a defect in a simple biochemical pathway? (p. 286)
- How does aspirin work? (p. 201)
- How do certain kinds of cholesterol predict heart attacks? (p. 512)
- What happens when athletes take steroids? (p. 514)
- How can mistakes in the replication of DNA lead to cancer? (p. 619)
- How can inducing more mistakes actually treat cancer? (pp. 592 and 620)

Clinical Insight

Mutations in Initiation Factor 2 Cause a Curious Pathological Condition

Mutations in eukaryotic initiation factor 2 result in a mysterious disease, called vanishing white matter (VWM) disease, in which nerve cells in the brain disepera and are replaced by cerebrospinal fluid (Figure 40.13). The white matter of the brain consists predominately of nerve axons that connect the gray matter of the brain to the rest of the body. Death, resulting from fever or extended coma, is anywhere from a few years to decades after the onset of the disease. An especially puzzling aspect of the disease is its tissue specificity. A mutation in a biochemical process as fundamental to life as protein-synthesis initiation would be predicted to be lethal or to at least affect all tissues of the body. Diseases such as VWM graphically show that, although much progress has been made in biochemistry, much more research will be required to understand the complexities of health and disease.

Figure 40.13 The effects of vanishing white matter disease (A) In the normal brain, magnetic resonance imaging (MRI) visualizes the white matter as dark gray. (B) In the diseased brain, MRI versals that white matter is replaced by cerebrospinal fluid, seen as white. [Courtey of Majo S. var der Knaap, MD, Ph.D, VU University Medical Center, The Nethenlands.]

Biological Insights

Biochemistry affects every aspect of our world, sometimes in strange and amazing ways. Like Clinical Insights, Biological Insights bolster students' understanding of biochemical concepts as they learn how simple changes in biochemical processes can have dramatic effects. We aim to enrich students' understanding of their world by answering such questions as:

- How do snakes digest food before they eat it? (p. 242)
- What happens when algae breathe too much? (p. 362)
- Why does bread go stale? (p. 413)
- Why is it a bad idea to eat green potato chips? (p. 395)
- How do weed killers work? (p. 403)
- What makes snakes such effective hunters? (p. 206)
- How does a mutation in a mitochondrial protein alter pig behavior? (p. 378)

Lists of all Clinical and Biological Insights are included on page x as a quick reference for instructors.

Biological Insight

Chlorophyll in Potatoes Suggests the Presence of a Toxin

Chlorophyll synthesis is a warning sign when it comes to identifying poisonous potatoes. Light activates a noxious pathway in potatoes that leads to the synthesis of solanine, a toxic alkaloid. Plant alkaloids include such molecules as nicotine, caffeine, morphine, cocaine, and codeine.

Solanine is toxic to animals because it inhibits acetylcholinesterase, an enzyme crucial for controlling the transmission of nerve impulses. Plants are thought to synthesize solanine to discourage insects from eating the potato. Light also causes potatoes to synthesize chlorophyll, which causes the tubers to turn green. Potatoes that are green have been exposed to light and are therefore probably also synthesizing solanine (Figure 22.9). For this reason, it is best not to eat green potatoes or potato chips with green edges.

Figure 22.9 Toxic potatoes. Potatoes that are exposed to light synthesize chlorophyll, resulting in greenish potatoes. Light also activates a pathway that results in the synthesis of solarine, a toxic alkaloid. Potato chips made from lightexposed potatoes have green edges. [Science Photo Librarv/Alamv]

Nutritional Examples

Examples of the underlying relation between nutrition and biochemistry abound. Some examples in this edition answer questions such as:

- Why do we depend on Vitamin C? (p. 55)
- Are CoQ 10 supplements effective? (p. 360)
- How does bread crust become crisp? (p. 414)
- Why is Vitamin D an "honorary steroid?" (p. 513)

For a full list of the nutritional examples in this edition, see page xi.

Vitamin and Coenzyme Appendix

We have included a redesigned appendix of nine key vitamins including important information such as main food sources, diseases that are caused by deficiencies, the recommended daily allowance, and the book page on which each vitamin is discussed in detail. This table appears on pages A6–A15.

Teaching and Learning with this Book

In addition to providing an engaging contextual framework for the biochemistry throughout the book, we have created several opportunities for students to check their understanding, reinforce connections across the book, and practice what they have learned.

Applied Approach to Difficult Topics

Working with feedback from instructors across North America, we have focused particular attention on topics that students find difficult, resulting in new sections such as:

- Making Buffers Is a Common Laboratory Practice (Chapter 2): takes an applied approach to helping students understand pH.
- There Are Six Major Classes of Enzymes (Chapter 6): helps students recognize the capabilities of enzymes.

End-of-Chapter Problems

Each chapter includes a robust set of practice problems. We have increased the number of end-of-chapter problems by 50% in the second edition.

- A new **Challenge Problems** section requires calculations plus an understanding of chemical structures and of concepts that are challenging for most students.
- **Data Interpretation Problems** train students to analyze data and reach scientific conclusions.
- Chapter Integration Problems draw connections between concepts across chapters.

Brief solutions to all of the end-of-chapter problems are provided in Answers to Problems at the back of the textbook. We are also pleased to offer expanded solutions in the new accompanying *Student Companion*, by Frank Deis, Nancy Counts Gerber, Richard Gumport, and Roger Koeppe. For more details on this supplement see page xiii.

Learning Objectives

Learning objectives are used in many different ways in the classroom. To help reinforce key concepts while the student is reading the chapter, we have identified these concepts with a ✓ and number. These identifiers appear in the Section introductions as well as in the chapters in which the key concepts are presented. They are also tied to the end-of-chapter problems to assist students in developing problem-solving skills and instructors in assessing students' understanding of some of the key concepts in each chapter.

	In this chapter, we will examine the properties of the various levels of protein structure. Then, we will investigate how primary structure determines the final three-dimensional structure.
2 Compare and contrast the different levels of protein structure and how they relate to one another.	4.1 Primary Structure: Amino Acids Are Linked by Peptide Bonds to Form Polypeptide Chains
	Proteins are complicated three-dimensional molecules, but their three-dimensional structure depends simply on their <i>primary structure</i> —the <i>linear polymers</i> formed by linking the α -carboxyl group of one amino acid to the α -amino group of another amino acid. The linkage joining amino acids in a protein is called a <i>peptide bond</i> (also called an <i>amide bond</i>). The formation of a dipeptide from two amino acids is accompanied by the loss of a water molecule (Figure 4.1). The equilibrium of this reaction lies on the side of hydrolysis rather than synthesis under most conditions. Hence, the biosynthesis of peptide bonds requires an input of free energy. None-theless, peptide bonds are quite stable kinetically because the rate of hydrolysis is extremely slow; the lifetime of a peptide bond in aqueous solution in the absence of a catalyst approaches 1000 years.

Margin Features

We use the margin features in the textbook in several ways to help engage students, emphasize the relevance of biochemistry to their lives, and make it more accessible.

• Quick Quizzes allow students to check their understanding of the material as they read it so that they can immediately gauge whether they need to review a topic or advance to the next one. Answers to the Quick Quizzes can be found at the end of each chapter.

- **Margin Structures** enable students to understand the topic at hand without needing to look up a basic structure or functional group that they may have seen earlier in the book or in another course.
- **Margin Facts** are short asides to the biochemical topic under consideration that relate the topic to everyday life or provide glimpses of how scientists think about science.
- Vitamins and Coenzymes are featured in the margin next to their inclusion as part of an enzyme mechanism or metabolic pathway. Through these margin features, students will learn how we obtain vitamins from our diets and what happens if we do not have enough of them. These important molecules and their structures can be found in Appendix D to help students easily find where each vitamin is discussed in the book.

Vitamin C

Human beings are among the few mammals unable to synthesize vitamin C. Citrus products are the most common source of this vitamin. Vitamin C functions as a general antioxidant to reduce the presence of reactive oxygen species throughout the body. In addition, it serves as a specific antioxidant by maintaining metals, required by certain enzymes such as the enzyme that synthesizes hydroxyproline, in the reduced state. [Photograph from Don Farrell/Digital Vision/Getty Images.]

8

Clinical Insights This icon signals the beginning of a Clinical Insight in the text.

Defects in organelle function (p. 14) Pathological conditions and protein intake (p. 42) Osteogenesis imperfecta and scurvy (p. 55) Protein-misfolding diseases (p. 61) Aldehyde dehydrogenase deficiency (p. 108) Gout (p. 117) Action of penicillin (p. 132) Functional magnetic resonance imaging (p. 144) Fetal hemoglobin (p. 146) Sickle-cell anemia (p. 147) Glycosylated hemoglobin (p. 161) Erythropoietin (p. 168) Proteoglycans (p. 169) I-cell disease (p. 172) Lectins (p. 173) Influenza virus binding (p. 173) Hutchinson–Gilford progeria syndrome (p. 189) Clinical applications of liposomes (p. 197) Aspirin and ibuprofen (p. 201) Digitalis and congenital heart failure (p. 204) Multidrug resistance (p. 204) Harlequin ichthyosis (p. 205) Cholera and whooping cough (p. 221) Signal-transduction pathways and cancer (p. 229) Protein kinase inhibitors as anticancer drugs (p. 230) Generating ATP for exercise (p. 254) Pantothenate-kinase-associated degeneration (p. 260) Lactose intolerance (p. 285) Galactosemia (p. 286) Exercise and cancer (p. 292) Insulin and type 2 diabetes (p. 309) Phosphatase deficiency (p. 324) Enhanced pyruvate dehydrogenase kinase activity and cancer (p. 325) Beriberi (p. 325) Defects in the citric acid cycle and cancer (p. 340) Mitochondrial diseases (p. 381) Hers disease (p. 430) Diabetes mellitus (p. 444) Glycogen-storage diseases (p. 445)

Hemolytic anemia (p. 459) Carnitine deficiency (p. 468) Fatty acid synthase inhibitors as drugs (p. 487) γ -Hydroxybutyric acid (p. 487) Aspirin modification of a key enzyme (p. 489) Ganglioside binding (p. 501) Respiratory distress syndrome and Tay-Sachs disease (p. 501) Hypercholesterolemia and atherosclerosis (p. 510) The role of HDL in protecting against atherosclerosis (p. 512) Rickets and vitamin D (p. 513) Anabolic effects of androgens (p. 514) Inherited defects of the urea cycle (hyperammonemia) (p. 529) Phenylketonuria (p. 536) High homocysteine levels and vascular disease (p. 548) Anticancer drugs that block the synthesis of thymidylate (p. 564) Adenosine deaminase and severe combined immunodeficiency (p. 568) Gout and high levels of urate (p. 568) Lesch–Nyhan syndrome (p. 569) Folic acid and spina bifida (p. 569) DNA damage and cancer-cell growth (p. 592) Antibiotics that target DNA gyrase (p. 602) Blocking telomerase to treat cancer (p. 609) Huntington disease (p. 614) Defective repair of DNA and cancer (p. 619) Screening for chemical carcinogens (p. 620) Antibiotic inhibitors of transcription (p. 637) Quorum sensing (p. 640) Enhancer sequences and cancer (p. 650) Induced pluripotent stem cells (p. 650) Steroid-hormone receptors as targets for drugs (p. 653) Disease-causing mutations in pre-mRNA (p. 666) Alternative splicing (p. 667) Vanishing white matter disease (p. 697) Antibiotics that inhibit protein synthesis (p. 698) Diphtheria and protein synthesis inhibition (p. 699) Ricin, a lethal protein-synthesis inhibitor (p. 700) Advances in DNA-sequencing technologies (p. 719) Uses of the polymerase chain reaction (p. 722)

-

Biological Insights This icon signals the beginning of a Biological Insight in the text.

- Hemoglobin adaptations (p. 147) Glucosinolates (p. 163) Blood groups (p. 171) Membranes of archaea (p. 187) Transient-receptor-potential channels (p. 206) Digestive enzymes in snake venom (p. 242) Endosymbiotic origin of mitochondria (p. 351) The Gulf of Mexico dead zone (p. 362) Regulated uncoupling and the generation of heat (p. 378) Chloroplasts (p. 391) Chlorophyll in potatoes (p. 395)
- Herbicides and the light reactions of photosynthesis (p. 403) Volcanic eruptions and photosynthesis (p. 412) Bread staling (p. 413) Glycogen depletion and fatigue (p. 432) Glucose 6-phosphate dehydrogenase deficiency (p. 460) Hibernation and nitrogen disposal (p. 529) Means of nitrogen disposal (p. 530) Quorum sensing (p. 640) Advances in DNA-sequencing technologies (p. 719) Uses of the polymerase chain reaction (p. 722)

Nutritional Examples

Gastroesophageal reflux disease (p. 26) Lysine as an essential amino acid (p. 40) Glutamic acid as a tastant (p. 41) Kwashiorkor and protein intake (p. 42) Vitamin C and scurvy (p. 55) Papain as a meat tenderizer (p. 94) Ethanol metabolism and facial flushing (p. 108) Defective regulation as a cause of gout (p. 117) Pepsin and digestion (pp. 127 and 238) Chymotrypsin and digestion (pp.134 and 239) Brassicales, herbivory, and cancer (p. 163) Sucrose, lactose, and maltose (p. 164) Starch (p. 165) Dietary fiber (p. 166) Olive oil (pp. 179 and 182) Fatty acids in the diet (p. 182) Glucose uptake from the intestine (p. 205) Pufferfish and tetrodotoxin (p. 206) Protein and digestion (pp. 238–240) Dietary carbohydrates and digestion (pp. 240–241) Lipids and digestion (pp. 241–242) Obesity and caloric homeostasis (pp. 243–244) Creatine and exercise (pp. 254–255) Fuel molecules (pp. 255–256) Pantothenate (p. 260) Activated carriers in metabolism (p. 261) The B vitamins (p. 262) Noncoenzyme vitamins (pp. 262-263) Niacin (p. 279) Ethanol (pp. 280–281) Thiamine (p. 281) Fermentation in food products (pp. 282–283) Common sugars as energy sources (pp. 283–285) Lactose intolerance (p. 285) Galactosemia (p. 286) Biotin (p. 303) Diet and type 2 diabetes (p. 309) Pyruvate dehydrogenase phosphatase deficiency and glucose metabolism (p. 324)

Beriberi and thiamine deficiency (pp. 325–326) Citric acid and citrus fruits (p. 332) Apples and malic acid (p. 337) Oil-rich seeds (p. 341) Coenzyme Q (CoQ 10) (p. 360) Antioxidants (p. 364) Chlorophyll in potatoes (p. 395) Pheophytin and cooking green vegetables (p. 397) Starch and sucrose synthesis (pp. 412–413) Why bread becomes stale (pp. 413–414) Glycogen depletion and fatigue (p. 432) Glucose storage as glycogen (p. 440) "Carbo loading" (p. 440) Glycogen metabolism and diabetes (pp. 444–445) Oxidative stress and glucose 6-phosphate dehydrogenase (p. 459) Carnitine (p. 468) Vitamin B₁₂ (pp. 472 and 473) Diabetes and ketone bodies (p. 475) Starvation and ketone bodies (p. 476) ω -Fatty acids (p. 488) Ethanol and liver metabolism (pp. 491–492) Cholesterol metabolism (pp. 503–508) "Good" and "bad" cholesterol (p. 512) Steroids (pp. 512–513) Vitamin D (pp. 513–514) Ethanol and retinoic acid metabolism (p. 515) Amino acid degradation (pp. 530–537) Pyridoxine (vitamin B_6) (p. 545) Essential amino acids (p. 545) Gout and urate as an antioxidant (pp. 568–569) Folic acid deficiency (pp. 569–570) Screening for chemical carcinogens (p. 620) Processing of milk sugar by *E. coli* (p. 638) Steroid hormone action (p. 651) Ricin poisoning (p. 700) Iron and control of protein synthesis (p. 702) Agarose (p. 712)

Media and Supplements

A full package of media resources and supplements provides instructors and students with innovative tools to support a variety of teaching and learning approaches. All these resources are fully integrated with the style and goals of the textbook.

eBook

http://ebooks.bfwpub.com/tymoczko2e

This online version of the textbook combines the contents of the printed book, electronic study tools, and a full complement of student media specifically created to support the textbook. Problems and resources from the printed textbook are incorporated throughout the eBook to ensure that students can easily review specific concepts. The eBook enables students to:

- Access the complete book and its electronic study tools from any Internet-connected computer by using a standard Web browser;
- Navigate quickly to any section or subsection of the book or any page number of the printed book;
- Add their own bookmarks, notes, and highlighting;
- Access all the fully integrated media resources associated with the book;
- Review quizzes and personal notes to help prepare for exams; and
- Search the entire eBook instantly, including the index and glossary.

Instructors teaching from the eBook can assign either the entire textbook or a custom version that includes only the chapters that correspond to their syllabi. They can choose to add notes to any page of the eBook and share these notes with their students. These notes may include text, Web links, animations, or photographs.

BiochemPortal

http://courses.bfwpub.com/tymockzo2e

BiochemPortal is a dynamic, fully integrated learning environment that brings together all of our teaching and learning resources in one place. This learning system also includes easy-to-use, powerful assessment tracking and grading tools that enable instructors to assign problems for practice, as homework, quizzes, or tests. A personalized calendar, an announcement center, and communication tools help instructors to manage their courses. In addition to all the resources found on the companion Web site, BiochemPortal includes the following resources:

- The **Interactive eBook** integrates the complete text with all relevant media resources.
- Learning Curve is a new quizzing engine that adapts to learning needs and tells students just what to study.
- The **Metabolic Map** helps students understand the principles and applications of the core metabolic pathways. Students can work through guided tutorials with embedded assessment questions or they can explore the Metabolic Map on their own by using the dragging and zooming function of the map.

Companion Web site at www.whfreeman.com/tymoczko2e

For Students

- **Problem-solving videos**, created by Scott Ensign of Utah State University, provide 24/7 online problem-solving help to students. Through a two-part approach, each 10-minute video covers a key textbook problem on a topic that students traditionally struggle to master. Dr. Ensign first describes a problem-solving strategy and then applies the strategy to the problem at hand in clear, concise steps. Students can easily pause, rewind, and review any of the steps until they firmly grasp not just the solution but also the reasoning behind it. Working through the problems in this way is designed to make students better and more confident at applying key strategies as they solve other textbook and exam problems.
- **Living Figures** enable students to view every textbook illustration of a protein structure online in interactive 3-D using Jmol. Students can zoom and rotate 56 "live" structures to get a better understanding of their three-dimensional nature and can experiment with different display styles (space-filling, ball-and-stick, ribbon, or backbone) by means of a user-friendly interface.
- Self-assessment tool enables students to test their understanding by taking an online multiple-choice quiz for each chapter, as well as a multiple-choice quiz as a general chemistry review.
- Web links connect students with the world of biochemistry beyond the classroom.

For Instructors

All of the features listed for students plus:

- **Optimized JPEGs** of all illustrations, photographs, and tables in the textbook, including structures of common compounds, ensure maximum clarity and visibility in lecture halls and on computer screens. The JPEGs are also offered in separate PowerPoint files.
- **Test Bank**, by Harvey Nikkel of Grand Valley State University, Susan Knock of Texas A&M University at Galveston, and Joseph Provost of Minnesota State University at Moorhead, offers more than 1500 questions in editable Word format.
- **Clicker Questions** include more than 100 questions for classroom use that will work seamlessly with any personal response system.

Instructor's Resource DVD

(1-4641-0976-1) The DVD includes all instructor resources that are on the Web site.

Student Companion

By Frank Deis, Rutgers University; Nancy Counts Gerber, San Francisco State University; Richard I. Gumport, College of Medicine at Urbana-Champaign, University of Illinois; and Roger E. Koeppe, II, University of Arkansas at Fayetteville. (1-4641-0934-6)

For each chapter of the textbook, the *Student Companion* includes:

- Chapter Learning Objectives and Summary
- Self-Assessment Problems, including multiple-choice, short-answer, matching questions, and challenge problems, and their answers
- Expanded Solutions to the end-of-chapter problems in the textbook

Acknowledgments

Our thanks go to the instructors and professors who have reviewed the chapters of this book. Their sharp eyes and keen insights strongly influenced us as we wrote and shaped the various drafts of each chapter to create this completed work.

Paul Adams University of Arkansas John Amaral Vancouver Island University Glenn Barnett Central College Lois Bartsch Kaplan University Toni Bell Bloomsburg University of Pennsylvania Veronic Bezaire Carleton University Gary Blomquist University of Nevada Jeanne Buccigross College of Mount St Joseph Jean A. Cardinale Alfred University Natalie Coe Green Mountain College Randolph Coleman College of William & Mary Scott Covey University of British Columbia John Ferguson Bard College Jon Friesen Illinois State University Alex Georgakilas East Carolina University Christina Goode California State University, Fullerton Ron Harris Marymount College Jane E. Hobson Kwantlen Polytechnic University Frans Huijing University of Miami Sajith Jayasinghe California State University, San Marcos David Josephy University of Guelph Julia Koeppe Ursinus College Dmitry Kolpashchikov University of Central Florida

Jodi Kreiling University of Nebraska, Omaha Paul Larsen University of California, Riverside Guiin Lee Pennsylvania State University, Abington Scott Lefler Arizona State University Aime Levesque University of Hartford Lisa M. Lindert California Polytechnic State University, San Luis Obispo Linda Luck State University of New York, Plattsburgh John Picione Daytona State College Carol Potenza New Mexico State University Gary Powell Clemson University Terence Puryear Northeastern Illinois University David Sabatino Seton Hall University Matthew Saderholm Berea College Ann Shinnar Lander College for Men/Touro College Salvatore Sparace Clemson University Narasimha Sreerama Colorado State University Jon Stolzfus Michigan State University Jeffrey Temple Southeastern Louisiana University Jana Villemain Indiana University of Pennsylvania Todd Weaver University of Wisconsin, La Crosse Wu Xu University of Louisiana, Lafayette Laura Zapanta University of Pittsburgh

We have had the pleasure of working with our colleagues at W. H. Freeman and Company on a number of projects and, as a consequence, we have had the opportunity to thank them for their efforts many times. Although the acknowledgments section may seem, of necessity, to be something of a boilerplate, our gratefulness for their efforts and guidance is as sincere as it was when we were inexperienced authors. Our experiences with this edition have been as delightful and rewarding as they were in our past projects. Without fail, our collaborators at Freeman are intelligent, dedicated, caring people with a knack for taking on stressful, but exhilarating, projects and reducing the stress without reducing the exhilaration. We have many people to thank for this experience. First, we would like to acknowledge the encouragement, patience, excellent advice, and good humor of our Publisher, Kate Ahr Parker. Kate can suggest difficult challenges with such grace and equanimity that we readily accept the challenge. New to our book team for this edition is Anna Bristow, our shepherd, more commonly called a developmental editor. Anna is another in a line of outstanding developmental editors at Freeman with whom we have had the pleasure to work. Her insight, patience, and guidance made this effort successful and enjoyable. Georgia Lee Hadler, Senior Project Editor, managed the flow of the project and its overall layout with her usual admirable efficiency. Patricia Zimmerman, our manuscript editor, enhanced the literary consistency and clarity of the text. Vicki Tomaselli, Design Manager, and Patrice Sheridan, designer, contributed to the book's inviting and accessible appearance. Christine Buese and Ramón Rivera Moret, Photo Editor and Photo Researcher, respectively, found the photographs that helped to achieve one of our main goals—linking biochemistry to the everyday world of the student. Janice Donnola, Illustration Coordinator, deftly directed the rendering of new illustrations. Paul Rohloff, Production Manager, made sure the difficulties of scheduling, composition, and manufacturing were readily overcome. Debbie Clare, Associate Director of Marketing, introduced this second edition to the academic world as enthusiastically as she did the first edition. We are more grateful to the sales staff at W. H Freeman for their enthusiastic support than we can put into words. Without the efforts of the sales force to persuade professors to examine our book, all of our own excitement and enthusiasm for this book would be meaningless. We also thank Elizabeth Widdicombe, President of W. H. Freeman and Company. Her vision for science textbooks and her skill at gathering exceptional personnel make working with W. H. Freeman a true pleasure.

Outside the Freeman team, we thank Adam Steinberg of the University of Wisconsin for renderings of the new molecular models and Lois Bartsch of Kaplan University and Jean A. Cardinale of Alfred University for careful accuracy checking. John Amaral of Vancouver Island University, Lisa M. Lindert of California Polytechnic State University, San Luis Obispo, and Scott Lefler of Arizona State University read each and every chapter and examined all illustrations for accuracy and clarity. We are very thankful for their many comments and suggestions. A special thanks goes to Greg Gatto, an investigator at GlaxoSmithKline, who was our sounding board for ideas and problems, scientific advisor, reviewer, and all-around scientific handyman. He has made wonderful contributions to the success of this endeavor. Thanks also to our many colleagues at our own institutions as well as throughout the country who patiently answered our questions and encouraged us on our quest. Finally, we owe a debt of gratitude to our families. Without their support, comfort, and understanding, this project could never have been undertaken let alone successfully completed.

Brief Contents

PART I **THE MOLECULAR DESIGN OF LIFE**

SECTION 1 Biochemistry Helps Us Understand Our World	1
Chapter 1 Biochemistry and the Unity of Life	3
Chapter 2 Water, Weak Bonds, and the Generation of Order Out of Chaos	17
SECTION 2 Protein Composition	
and Structure	33
Chapter 3 Amino Acids	35
Chapter 4 Protein Three-Dimensional Structure	45
Chapter 5 Techniques in Protein Biochemistry	67
SECTION 3 Basic Concepts and Kinetics	
of Enzymes	91
Chapter 6 Basic Concepts of Enzyme Action	93
Chapter 7 Kinetics and Regulation	105
Chapter 8 Mechanisms and Inhibitors	125
Chapter 9 Hemoglobin, an Allosteric Protein	141
SECTION 4 Carbohydrates and Lipids	155
Chapter 10 Carbohydrates	157
Chapter 11 Lipids	179

SECTION 5 Cell Membranes, Channels, Pumps, and Receptors

Chapter 12	Membrane Structure and Function	195
Chapter 13	Signal-Transduction Pathways	215

PART II TRANSDUCING AND STORING ENERGY

SECTION 6 of Metabo	Basic Concepts and Design blism	235
Chapter 14 Cellular Biod	Chapter 14 Digestion: Turning a Meal into Cellular Biochemicals	
Chapter 15	Metabolism: Basic Concepts and Design	247
SECTION 7	Glycolysis and Gluconeogenesis	269
Chapter 16	Glycolysis	271
Chapter 17	Gluconeogenesis	299
SECTION 8	The Citric Acid Cycle	315
Chapter 18	Preparation for the Cycle	317
Chapter 19	Harvesting Electrons from the Cycle	329
SECTION 9	Oxidative Phosphorylation	347
Chapter 20	The Electron-Transport Chain	349

Chapter 21	The Proton-Motive Force	367
SECTION 10 of Photosy	The Light Reactions onthesis and the Calvin Cycle	387
Chapter 22	The Light Reactions	389
Chapter 23	The Calvin Cycle	407
SECTION 11 and the Pe	Glycogen Metabolism entose Phospate Pathway	421
Chapter 24	Glycogen Degradation	423
Chapter 25	Glycogen Synthesis	437
Chapter 26	The Pentose Phosphate Pathway	451
SECTION 12	Fatty Acid and Lipid	463
Chapter 27	Eatty Acid Degradation	403
Chapter 27	Fatty Acid Synthesis	405
Chapter 20	Fatty Actu Synthesis	401
Phospholipid	s, and Cholesterol	497
	The Metabolism	
of Nitroae	n-Containing Molecules	521
Chapter 30	Amino Acid Degradation	
and the Urea	ı Cycle	523
Chapter 31	Amino Acid Synthesis	541
Chapter 32	Nucleotide Metabolism	555
PART III		
SYNTHESIN	NG THE MOLECULES OF LIFE	
SECTION 14	Nucleic Acid Structure	
and DNA I	Replication	575
Chapter 33	The Structure of Informational	
Macromolecu	Iles: DNA and RNA	577
Chapter 34	DNA Replication	597
Chapter 35	DNA Repair and Recombination	613
SECTION 15 and Regula	RNA Synthesis, Processing, ation	627
Chapter 36	RNA Synthesis and Regulation	
in Bacteria		629
Chapter 37	Gene Expression in Eukaryotes	645
Chapter 38	RNA Processing in Eukaryotes	661
SECTION 16 and Recon	Protein Synthesis Ibinant DNA Techniques	675
Chapter 39	The Genetic Code	679
Chapter 40	The Mechanism of Protein Synthesis	689
Chapter 41	Recombinant DNA Techniques	709

Contents

PART I THE MOLECULAR DESIGN OF LIFE

SECTION 1 Biochemistry Helps Us Understand Our World 1 Chapter 1 Biochemistry and the Unity of Life **1.1** Living Systems Require a Limited Variety of Atoms and Molecules **1.2** There Are Four Major Classes of Biomolecules Proteins Are Highly Versatile Biomolecule Nucleic Acids Are the Information Molecules of the Cell Lipids Are a Storage Form of Fuel and Serve As a Barrier Carbohydrates Are Fuels and Informational Molecules **1.3** The Central Dogma Describes the Basic Principles of Biological Information Transfer 1.4 Membranes Define the Cell and Carry Out **Cellular Functions Biochemical Functions Are Sequestered in Cellular** Compartments Some Organelles Process and Sort Proteins and Exchange Material with the Environment **Clinical Insight** Defects in Organelle Function May Lead to Disease Chapter 2 Water, Weak Bonds, and the Generation of Order Out of Chaos 17 2.1 Thermal Motions Power Biological Interactions 2.2 Biochemical Interactions Take Place in an Aqueous Solution 2.3 Weak Interactions Are Important Biochemical Properties Electrostatic Interactions Are Between Electrical Charges Hydrogen Bonds Form Between an Electronegative Atom and Hydrogen van der Waals Interactions Depend on Transient Asymmetry in Electrical Charge Weak Bonds Permit Repeated Interactions **2.4** Hydrophobic Molecules Cluster Together Membrane Formation Is Powered by the Hydrophobic Effect Protein Folding Is Powered by the Hydrophobic Effect Functional Groups Have Specific Chemical Properties 2

2.5	pH Is an Important Parameter of Biochemical
	Systems
	Water Ionizes to a Small Extent
	An Acid Is a Proton Donor, Whereas a Base Is
	a Proton Acceptor
	Acids Have Differing Tendencies to Ionize
	Buffers Resist Changes in pH
	Buffers Are Crucial in Biological Systems
IEW	Making Buffers Is a Common Laboratory Practice

SECTION 2

3

4

5

5

6

6

7

7

8

11

12

14

18

18

20

20

21

21

22

22

23

24

24

26 26

Protein Composition and Structure	33
Chapter 3 Amino Acids Two Different Ways of Depicting Biomolecules Will Be Used	35 35
3.1 Proteins Are Built from a Repertoire of 20 Amino Acids Most Amino Acids Exist in Two Mirror-Image Forms All Amino Acids Have at Least Two Charged Groups	36 36 36
3.2 Amino Acids Contain a Wide Array of Functional Groups Hydrophobic Amino Acids Have Mainly Hydrocarbon Side Chains	<mark>37</mark> 37
Polar Amino Acids Have Side Chains That Contain an Electronegative Atom Positively Charged Amino Acids Are Hydrophilic Negatively Charged Amino Acids Have Acidic	39 40
Side Chains The Ionizable Side Chains Enhance Reactivity and Bonding	41 41
 3.3 Essential Amino Acids Must Be Obtained from the Diet Clinical Insight Pathological Conditions 	42
Result If Protein Intake Is Inadequate	42
Chapter 4 Protein Three-Dimensional Structure	45
Peptide Bonds to Form Polypeptide Chains Proteins Have Unique Amino Acid Sequences	46
Specified by Genes Polypeptide Chains Are Flexible Yet Conformationally Restricted	47 48
4.2 Secondary Structure: Polypeptide Chains Can Fold into Regular Structures	50
by Intrachain Hydrogen Bonds	50
Beta Sheets Are Stabilized by Hydrogen Bonding Between Polypeptide Strands Polypeptide Chains Can Change Direction	51
by Making Reverse Turns and Loops Fibrous Proteins Provide Structural Support	53
for Cells and Tissues New Clinical Insight Defects in Collagen Structure Results Defects in Defects in Collagen Structure Results	53 Ilt
4.3 Tertiary Structure: Water-Soluble Proteins Fold	55
into Compact Structures Myoglobin Illustrates the Principles of Tertiary Structure The Tertiary Structure of Many Proteins Can Be Divided	<mark>55</mark> 55
into Structural and Functional Units	57
Chains Can Assemble into a Single Protein	57

xvii

xvii	i Contents	
4.5	The Amino Acid Sequence of a Protein Determines	
	Its Three-Dimensional Structure Proteins Fold by the Progressive Stabilization	58
NEW	of Intermediates Rather Than by Random Search Some Proteins Are Inherently Unstructured and	59
	Can Exist in Multiple Conformations	60
8	Clinical Insight Protein Misfolding and Aggregation Are Associated with Some Neurological Diseases	61
Cha	pter 5 Techniques in Protein Biochemistry	67
5.1	The Proteome Is the Functional Representation of the Genome	68
5.2	The Purification of a Protein Is the First Step in Understanding Its Function	68
	Proteins Can Be Purified on the Basis of Differences	
	in Their Chemical Properties Proteins Must Be Removed from the Cell	69
	to Be Purified	69
	Proteins Can Be Purified According to Solubility,	70
	Size, Charge, and Binding Affinity Proteins Can Be Senarated by Gel Electrophoresis	70
	and Displayed	72
	A Purification Scheme Can Be Quantitatively Evaluated	75
5.3	Immunological Techniques Are Used	76
	Centrifugation Is a Means of Separating Proteins	76
	Gradient Centrifugation Provides an Assay	
	for the Estradiol-Receptor Complex	77
	Monoclonal Antibodies with Virtually Any	78
	Desired Specificity Can Be Readily Prepared	79
	The Estrogen Receptor Can Be Purified by	01
	Proteins Can Be Detected and Quantified with the	01
	Use of an Enzyme-Linked Immunosorbent Assay	82
	Western Blotting Permits the Detection of Proteins Separated by Gel Electrophoresis	82
54	Determination of Primary Structure Facilitates	02
	an Understanding of Protein Function	84
	Amino Acid Sequences Are Sources of Many	
	Kinds of Insight	86
SEC	TION 3	
Bas	sic Concepts and Kinetics	
of I	Enzymes	91
Cha	pter 6 Basic Concepts of Enzyme Action	93
6.1	Enzymes Are Powerful and Highly Specific Catalysts	93
	Proteolytic Enzymes Illustrate the Range	94
NEW	There Are Six Major Classes of Enzymes	94
6.2	Many Enzymes Require Cofactors for Activity	95
6.3	Free Energy Is a Useful Thermodynamic	
	Function for Understanding Enzymes	96
	The Free-Energy Change Provides Information About the	٩٥
	spontaneity but not the hate of a heaction	50

	The Standard Free-Energy Change of a Reaction Is Related to the Equilibrium Constant	97
	Enzymes Alter the Reaction Rate but Not the Reaction Equilibrium	98
6.4	Enzymes Facilitate the Formation	00
	The Formation of an Enzyme-Substrate Complex	99
	Is the First Step in Enzymatic Catalysis The Active Sites of Enzymes Have Some	100
	Common Features	100
	The Binding Energy Between Enzyme and Substrate Is Important for Catalysis	101
	Transition-State Analogs Are Potent Inhibitors of Enzyme	101
Cha	pter 7 Kinetics and Regulation	105
7.1	Kinetics Is the Study of Reaction Rates	106
7.2	The Michaelis-Menten Model Describes	
	the Kinetics of Many Enzymes	107
	Clinical Insight Variations in $K_{\rm M}$ Can	
	Have Physiological Consequences	108
	$K_{\rm M}$ and $V_{\rm max}$ Values Can Be Determined	100
	by Several Means K., and V. Values Are Important Enzyme	109
	Characteristics	109
	$K_{\rm cat}/K_{\rm M}$ Is a Measure of Catalytic Efficiency	110
	Most Biochemical Reactions Include	111
	Multiple Substrates	111
1.5	and Information Sensors	112
	Allosteric Enzymes Are Regulated by Products	112
	of the Pathways Under Their Control	112
	Allosterically Regulated Enzymes Do Not Conform	
	to Michaelis-Menten Kinetics	114
	in Ouaternary Structure	114
	Regulator Molecules Modulate the	
	$R \rightleftharpoons T$ Equilibrium	116
	The Sequential Model Also Can Account	116
<u>ک</u>	Clinical Insight Loss of Allostoric Control	110
	May Result in Pathological Conditions	117
7.4	Enzymes Can Be Studied One Molecule	
NEW	at a Time	117
Cha	nter 8 Mechanisms and Inhibitors	125
8 1	A Few Basic Catalytic Strategies Are Used	123
0.1	by Many Enzymes	125
8.2	Enzyme Activity Can Be Modulated by Temperature.	
	pH, and Inhibitory Molecules	126
	Temperature Enhances the Rate of	
	Enzyme-Catalyzed Reactions	126
	Final Philippines mave an Optimal philippines Can Be Inhibited by Specific Molecules	127 128
	Reversible Inhibitors Are Kinetically Distinguishable	129
	Irreversible Inhibitors Can Be Used to Map	
	the Active Site	131

	Clinical Insight Penicillin Irreversibly Inactivates a Key Enzyme in Bacterial Cell-Wall Synthesis	132
8.3	Chymotrypsin Illustrates Basic Principles	
	of Catalysis and Inhibition	134
	Chymotrypsin Action Proceeds in Two Steps Linked	154
	by a Covalently Bound Intermediate	135
	The Catalytic Role of Histidine 57 Was Demonstrated	
	by Affinity Labeling	136
	Histidine and Aspartic Acid	136
Cha	pter 9 Hemoglobin, an Allosteric Protein	141
9.1	Hemoglobin Displays Cooperative Behavior	142
9.2	Myoglobin and Hemoglobin Bind Oxygen	
	in Heme Groups	142
8	Clinical Insight Functional Magnetic Resonance	
	Imaging Reveals Regions of the Brain Posessing	
	Sensory Information	144
9.3	Hemoglobin Binds Oxygen Cooperatively	144
9.4	An Allosteric Regulator Determines	1.40
75	the Oxygen Affinity of Hemoglobin	146
8	Clinical Insight Hemoglobin's Oxygen	146
	Rielegisel Insight Hemerlehin Adoptations Allow	140
	Oxygen Transport in Extreme Environments	147
.	Clinical Insight Sickle Cell Anemia Is a	117
	Disease Caused by a Mutation in Hemoglobin	147
9.5	Hydrogen Jons and Carbon Dioxide Promote	
	the Release of Oxygen	149
	the Release of Oxygen	149
SEC	the Release of Oxygen	149
SEC Cai	the Release of Oxygen CTION 4 rbohydrates and Lipids	149 155
SEC Car Cha	the Release of Oxygen CTION 4 rbohydrates and Lipids	149 155 157
SEC Car Cha	the Release of Oxygen CTION 4 rbohydrates and Lipids pter 10 Carbohydrates 1 Monosaccharides Are the Simplest	149 155 157
SEC Car Cha 10.	the Release of Oxygen CTION 4 rbohydrates and Lipids pter 10 Carbohydrates 1 Monosaccharides Are the Simplest Carbohydrates	149 155 157 158
SEC Car Cha 10.	the Release of Oxygen CTION 4 bohydrates and Lipids pter 10 Carbohydrates 1 Monosaccharides Are the Simplest Carbohydrates Many Common Sugars Exist in Cyclic Forms	149 155 157 158 159
SEC Car Cha 10.	the Release of Oxygen CTION 4 rbohydrates and Lipids pter 10 Carbohydrates 1 Monosaccharides Are the Simplest Carbohydrates Many Common Sugars Exist in Cyclic Forms Clinical Insight Cyclic Hemiacetal Formation Constant Another Another Another	149 155 157 158 159
SEC Car Cha 10.	the Release of Oxygen CTION 4 rbohydrates and Lipids pter 10 Carbohydrates 1 Monosaccharides Are the Simplest Carbohydrates Many Common Sugars Exist in Cyclic Forms Clinical Insight Cyclic Hemiacetal Formation Creates Another Asymmetric Carbon Monosaccharides Are Joined to Alcohols and Amines	149 155 157 158 159 161
SEC Cai Cha 10.	 the Release of Oxygen CTION 4 bohydrates and Lipids pter 10 Carbohydrates 1 Monosaccharides Are the Simplest Carbohydrates Many Common Sugars Exist in Cyclic Forms Clinical Insight Cyclic Hemiacetal Formation Creates Another Asymmetric Carbon Monosaccharides Are Joined to Alcohols and Amines Through Glycosidic Bonds 	149 155 157 158 159 161 162
SEC Car Cha 10.	the Release of Oxygen CTION 4 rbohydrates and Lipids pter 10 Carbohydrates 1 Monosaccharides Are the Simplest Carbohydrates Many Common Sugars Exist in Cyclic Forms Clinical Insight Cyclic Hemiacetal Formation Creates Another Asymmetric Carbon Monosaccharides Are Joined to Alcohols and Amines Through Glycosidic Bonds New Biological Insight Glucosinolates Protect	149 155 157 158 159 161 162
SEC Car 10.	 the Release of Oxygen CTION 4 bohydrates and Lipids pter 10 Carbohydrates Monosaccharides Are the Simplest Carbohydrates Many Common Sugars Exist in Cyclic Forms Clinical Insight Cyclic Hemiacetal Formation Creates Another Asymmetric Carbon Monosaccharides Are Joined to Alcohols and Amines Through Glycosidic Bonds New Biological Insight Glucosinolates Protect Plants and Add Flavor to Our Diets 	149 155 157 158 159 161 162 163
SEC Can 10.	 the Release of Oxygen CTION 4 cbohydrates and Lipids pter 10 Carbohydrates 1 Monosaccharides Are the Simplest Carbohydrates Many Common Sugars Exist in Cyclic Forms Clinical Insight Cyclic Hemiacetal Formation Creates Another Asymmetric Carbon Monosaccharides Are Joined to Alcohols and Amines Through Glycosidic Bonds NEW Biological Insight Glucosinolates Protect Plants and Add Flavor to Our Diets 2 Monosaccharides Are Linked to Form 	149 155 157 158 159 161 162 163
SEC Cha 10.	 the Release of Oxygen CTION 4 rbohydrates and Lipids pter 10 Carbohydrates 1 Monosaccharides Are the Simplest Carbohydrates Many Common Sugars Exist in Cyclic Forms Clinical Insight Cyclic Hemiacetal Formation Creates Another Asymmetric Carbon Monosaccharides Are Joined to Alcohols and Amines Through Glycosidic Bonds NEW Biological Insight Glucosinolates Protect Plants and Add Flavor to Our Diets 2 Monosaccharides Are Linked to Form Complex Carbohydrates 	149 155 157 158 159 161 162 163 163
SEC Can 10.	 the Release of Oxygen CTION 4 cbohydrates and Lipids pter 10 Carbohydrates 1 Monosaccharides Are the Simplest Carbohydrates Many Common Sugars Exist in Cyclic Forms Clinical Insight Cyclic Hemiacetal Formation Creates Another Asymmetric Carbon Monosaccharides Are Joined to Alcohols and Amines Through Glycosidic Bonds NEW Biological Insight Glucosinolates Protect Plants and Add Flavor to Our Diets 2 Monosaccharides Are Linked to Form Complex Carbohydrates Specific Enzymes Are Responsible for Oligocascharide Accombly 	149 155 157 158 159 161 162 163 163
SEC Cha 10.	 the Release of Oxygen CTION 4 rbohydrates and Lipids pter 10 Carbohydrates 1 Monosaccharides Are the Simplest Carbohydrates Many Common Sugars Exist in Cyclic Forms Clinical Insight Cyclic Hemiacetal Formation Creates Another Asymmetric Carbon Monosaccharides Are Joined to Alcohols and Amines Through Glycosidic Bonds New Biological Insight Glucosinolates Protect Plants and Add Flavor to Our Diets 2 Monosaccharides Are Linked to Form Complex Carbohydrates Specific Enzymes Are Responsible for Oligosaccharide Assembly Sucrose, Lactose, and Maltose Are 	149 155 157 158 159 161 162 163 163 163
SEC Car 10.	 the Release of Oxygen CTION 4 bohydrates and Lipids pter 10 Carbohydrates 1 Monosaccharides Are the Simplest Carbohydrates 1 Monosaccharides Are the Simplest Carbohydrates Many Common Sugars Exist in Cyclic Forms Clinical Insight Cyclic Hemiacetal Formation Creates Another Asymmetric Carbon Monosaccharides Are Joined to Alcohols and Amines Through Glycosidic Bonds NEW Biological Insight Glucosinolates Protect Plants and Add Flavor to Our Diets 2 Monosaccharides Are Linked to Form Complex Carbohydrates Specific Enzymes Are Responsible for Oligosaccharide Assembly Sucrose, Lactose, and Maltose Are the Common Disaccharides 	149 155 157 158 159 161 162 163 163 163 163
SEC Car 10.	 the Release of Oxygen CTION 4 cbohydrates and Lipids pter 10 Carbohydrates 1 Monosaccharides Are the Simplest Carbohydrates 1 Monosaccharides Are the Simplest Carbohydrates Many Common Sugars Exist in Cyclic Forms 2 Clinical Insight Cyclic Hemiacetal Formation Creates Another Asymmetric Carbon Monosaccharides Are Joined to Alcohols and Amines Through Glycosidic Bonds New Biological Insight Glucosinolates Protect Plants and Add Flavor to Our Diets 2 Monosaccharides Are Linked to Form Complex Carbohydrates Specific Enzymes Are Responsible for Oligosaccharide Assembly Sucrose, Lactose, and Maltose Are the Common Disaccharides 	149 155 157 158 159 161 162 163 163 163 164 165
SEC Cha 10.	 the Release of Oxygen CTION 4 rbohydrates and Lipids pter 10 Carbohydrates 1 Monosaccharides Are the Simplest Carbohydrates Many Common Sugars Exist in Cyclic Forms Clinical Insight Cyclic Hemiacetal Formation Creates Another Asymmetric Carbon Monosaccharides Are Joined to Alcohols and Amines Through Glycosidic Bonds NEW Biological Insight Glucosinolates Protect Plants and Add Flavor to Our Diets 2 Monosaccharides Are Linked to Form Complex Carbohydrates Specific Enzymes Are Responsible for Oligosaccharide Assembly Sucrose, Lactose, and Maltose Are the Common Disaccharides Glycogen and Starch Are Storage Forms of Glucose Cellulose, a Structural Component of Plants, Is Made of Chains of Clucase 	149 155 157 158 159 161 162 163 163 163 163 164 165
SEC Car 10.	 the Release of Oxygen CTION 4 cbohydrates and Lipids pter 10 Carbohydrates 1 Monosaccharides Are the Simplest Carbohydrates Many Common Sugars Exist in Cyclic Forms Clinical Insight Cyclic Hemiacetal Formation Creates Another Asymmetric Carbon Monosaccharides Are Joined to Alcohols and Amines Through Glycosidic Bonds NEW Biological Insight Glucosinolates Protect Plants and Add Flavor to Our Diets 2 Monosaccharides Are Linked to Form Complex Carbohydrates Specific Enzymes Are Responsible for Oligosaccharide Assembly Sucrose, Lactose, and Maltose Are the Common Disaccharides Glycogen and Starch Are Storage Forms of Glucose Cellulose, a Structural Component of Plants, Is Made of Chains of Glucose 	149 155 157 158 159 161 162 163 163 163 164 165 165

	Contents	xix
	Carbohydrates May Be Linked to Asparagine, Serine, or Threonine Residues of Proteins	167
86)	Clinical Insight The Hormone Erythropoietin Is a Glycoprotein	168
	Proteoglycans, Composed of Polysaccharides and Protein, Have Important Structural Roles	168
198	Clinical Insight Proteoglycans Are Important Components of Cartilage	169
	Mucins Are Glycoprotein Components of Mucus	170
	Biological Insight Blood Groups Are Based on Protein Glycosylation Patterns	171
86	Clinical Insight Lack of Glycosylation Can Result in Pathological Conditions	172
10.4	Lectins Are Specific Carbohydrate-Binding Proteins	172
Ъ.	Lectins Promote Interactions Between Cells	173
¥	Development	173
	Clinical Insight Influenza Virus Binds to Sialic	
	Acid Residues	173
Chap	ter 11 Lipids	179
11.1	Fatty Acids Are a Main Source of Fuel	180
	Fatty Acids Vary in Chain Length and Degree of Unsaturation	181
	The Degree and Type of Unsaturation Are Important to Health	182
11.2	Triacylglycerols Are the Storage Form of Fatty Acids	183
11.3	There Are Three Common Types	
	of Membrane Lipids Phospholinids Are the Major Class	184
	of Membrane Lipids	184
	Membrane Lipids Can Include Carbohydrates	186
	Steroids Are Lipids That Have a Variety of Roles	186
	Are Built from Ether Lipids with Branched Chains	187
	Membrane Lipids Contain a Hydrophilic	
	and a Hydrophobic Molety	187
	Attachment of Hydrophobic Groups	188
<u> </u>	Clinical Insight Premature Aging Can Result	
	from the Improper Attachment of a Hydrophobic Group to a Protein	189
SECT	10N 5	
Cell	Membranes, Channels, Pumps,	
and	Receptors	193

Chapter 12 Membrane Structure and Function		195
12.1	Phospholipids and Glycolipids	
	Form Bimolecular Sheets	196
<u> </u>	Clinical Insight Lipid Vesicles Can Be Formed	
	from Phospholipids	197
	Lipid Bilayers Are Highly Impermeable to lons	
	and Most Polar Molecules	197

XX Contents

12.2	Membrane Fluidity Is Controlled by Fatty Acid Composition and Cholesterol Content	198
12.3	Proteins Carry Out Most Membrane Processes	199
	Variety of Ways	199
*	Clinical Insight The Association of Prostaglandin	
	H_2 Synthase-I with the Membrane Accounts for	201
124	Linids and Many Membrane Proteins Diffuse	201
12.4	Laterally in the Membrane	201
12.5	A Major Role of Membrane Proteins Is to Function As Transporters The Na ⁺ -K ⁺ ATPase Is an Important Pump in	202
æ	Many Cells	203
8	Clinical Insight Digitalis Inhibits the Na ⁺ -K ⁺ Pump by Blocking Its Dephosphorylation	204
*	Clinical Insight Multidrug Resistance Highlights a Family of Membrane Pumps with ATP-Binding Domains	204
)88	Clinical Insight Harlequin Ichthyosis Is a Dramatic Result of a Mutation in an ABC Transporter Protein	205
	Secondary Transporters Use One Concentration Gradient to Power the Formation of Another	205
	Across Membranes	206
	NEW Biological Insight Venomous Pit Vipers Use Ion Channels to Generate a Thermal Image	206
	The Structure of the Potassium Ion Channel Reveals the Basis of Ion Specificity	207
	Its Rapid Rate of Transport	208
Chap	ter 13 Signal-Transduction Pathways	215
13.1	Signal Transduction Depends on Molecular Circuits	216
13.2	Receptor Proteins Transmit Information	
	into the Cell	217
	Seven-Transmembrane-Helix Receptors Change	
	and Activate G Proteins	217
	Ligand Binding to 7TM Receptors Leads to the	210
	Activation of G Proteins Activated G Proteins Transmit Signals by	218
	Binding to Other Proteins	219
	Cyclic AMP Stimulates the Phosphorylation of Many Target Proteins by Activating Protein Kinase A	219
	G Proteins Spontaneously Reset Themselves	2.0
Ŧ	Through GTP Hydrolysis	220
8	Clinical Insight Cholera and Whooping Cough Are Due to Altered G-Protein Activity	221
	The Hydrolysis of Phosphatidylinositol Bisphosphate	
	Messengers	222
13.3	Some Receptors Dimerize in Response	
	to Ligand Binding and Recruit Tyrosine Kinases Receptor Dimerization May Result in Tyrosine Kinase	223
	Recruitment	223

	Some Receptors Contain Tyrosine Kinase Domains Within Their Covalent Structures Ras Belongs to Another Class of Signaling G Protein	224 226
13.4	Metabolism in Context: Insulin Signaling Regulates Metabolism The Insulin Becenter Is a Dimer That Closes Around	226
	a Bound Insulin Molecule	227
	The Activated Insulin-Receptor Kinase Initiates a Kinase Cascade Insulin Signaling Is Terminated by the Action of	227
	Phosphatases	228
13.5	Calcium Ion Is a Ubiquitous Cytoplasmic Messenger	228
13.6	Defects in Signal-Transduction Pathways Can Lead to Disease	229
666	Clinical Insight The Conversion of Proto-oncogenes into Oncogenes Disrupts the Regulation of Cell Growth	229
.	Clinical Insight Protein Kinase Inhibitors May Be	
	Effective Anticancer Drugs	230

PART II TRANSDUCING AND STORING ENERGY

SECTION 6

Basic Concepts and Design of Metabolism 235

Chapter 14 Digestion: Turning a Meal into		
	Cellular Biochemicals	237
14.1	Digestion Prepares Large Biomolecules	
	for Use in Metabolism	238
14.2	Proteases Digest Proteins into Amino Acids and Peptides	238
14.3	Dietary Carbohydrates Are Digested by	
	Alpha-Amylase	240
14.4	The Digestion of Lipids Is Complicated by	
	Their Hydrophobicity	241
	Biological Insight Snake Venoms Digest from	
	the Inside Out	242
14.5	Metabolism in Context: Cell Signaling	
NEW	Facilitates Caloric Homeostasis	243
	The Brain Plays a Key Role in Caloric Homeostasis	243
	Signals from the Gastrointestinal Tract Induce	244
	Lentin and Insulin Regulate Long Term Control	244
	of Caloric Homeostasis	244
Chap	oter 15 Metabolism: Basic Concepts	
	and Design	247
15.1	Metabolism Is Composed of Many	
1	nterconnecting Reactions	248
	Metabolism Consists of Energy-Yielding Reactions	
	and Energy-Requiring Reactions	249
	A Thermodynamically Unfavorable Reaction Can Be	
	Driven by a Favorable Reaction	249

15.2	ATP Is the Universal Currency of Free Energy ATP Hydrolysis Is Exergonic	<mark>250</mark> 250		
	ATP Hydrolysis Drives Metabolism by Shifting the Equilibrium of Coupled Reactions The High Phosphoryl-Transfer Potential of ATP Results	251		
	from Structural Differences Between ATP and Its Hydrolysis Products Phosphoryl-Transfer Potential Is an Important Form	252		
	of Cellular Energy Transformation	253		
8	Clinical Insight Exercise Depends on Various Means of Generating ATP	254		
15.3	The Oxidation of Carbon Fuels Is an Important Source of Cellular Energy	255		
	Carbon Oxidation Is Paired with a Reduction	255		
	Compounds with High Phosphoryl-Transfer Potential Can Couple Carbon Oxidation to ATP Synthesis	256		
15.4	Metabolic Pathways Contain Many	257		
	Activated Carriers Exemplify the Modular Design and Economy of Metabolism	257		
	Clinical Insight Lack of Activated Pantothenate			
	Results in Neurological Problems	260		
	Many Activated Carriers Are Derived from Vitamins	261		
15.5	Metabolic Processes Are Regulated			
	in Three Principal Ways	263		
	The Amounts of Enzymes Are Controlled	263		
	The Accessibility of Substrates Is Regulated	264 264		
SECT				
Glycolysis and Gluconeogenesis 20		269		
Chapter 16 Glycolysis		271		

16.1 Glycolysis Is an Energy-Conversion Pathway	272
Hexokinase Traps Glucose in the Cell and Begins Glycolysis	272
Fructose 1,6-bisphosphate Is Generated	
from Glucose 6-phosphate	274
The Six-Carbon Sugar Is Cleaved into Two	275
Three-Carbon Fragments	275
The Oxidation of an Aldenyde Powers the Formation	1
of a Compound Having High Phosphory-fransfer	276
TOLEIILIAI ATP Is Formed by Phoenbond Transfor from	270
1 3.Bisnhosnhoglycerate	277
Additional ATP Is Cenerated with the Formation	211
of Pyruvate	278
Two ATP Molecules Are Formed in the Conversion	270
of Glucose into Pyruvate	279
16.2 NAD ⁺ Is Regenerated	
from the Metabolism of Pyruvate	279
Fermentations Are a Means of Oxidizing NADH	279
Fermentations Provide Usable Energy in the	
Absence of Oxygen	282
16.3 Fructose and Galactose Are Converted	
into Glycolytic Intermediates	283

	Contents	xxi
	Clinical Insight Many Adults Are Intolerant of	
	Milk Because They Are Deficient in Lactase	285
1	Clinical Insight Galactose Is Highly Toxic	
	If the Transferase Is Missing	286
16.4	The Glycolytic Pathway Is Tightly Controlled Glycolysis in Muscle Is Regulated by Feedback	287
	Inhibition to Meet the Need for ATP	287
	to the Biochemical Versatility of the Liver A Family of Transporters Enables Glucose to Enter	288
	and Leave Animal Cells	291
<u></u>	Clinical Insight Cancer and Exercise Training	
	Affect Glycolysis in a Similar Fashion	292
16.5	Metabolism in Context: Glycolysis Helps	
	Pancreatic Beta Cells Sense Glucose	293
Chap	ter 17 Gluconeogenesis	299
17.1	Glucose Can Be Synthesized from	
	Noncarbohydrate Precursors	300
	Gluconeogenesis Is Not a Complete Reversal of Glycolysis	300
	The Conversion of Pyruvate into Phosphoenolpyruvate Begins with the Formation of Oxaloacetate	302
	and Converted into Phosphoenolpyruvate	304
	The Conversion of Fructose 1,6-bisphosphate into	
	Fructose 6-phosphate and Orthophosphate Is	204
	an irreversible Step The Generation of Free Glucose Is an Important	304

305

Six High-Transfer-Potential Phosphoryl Groups

Control Point

	Are Spent in Synthesizing Glucose from Pyruvate	305
17.2	Gluconeogenesis and Glycolysis	
	Are Reciprocally Regulated	306
	Energy Charge Determines Whether Glycolysis	
	or Gluconeogenesis Will Be More Active	306
	The Balance Between Glycolysis and	
	Gluconeogenesis in the Liver Is Sensitive to	207
35		507
*	Clinical Insight Insulin Fails to Inhibit	200
	Gluconeogenesis in Type 2 Diabetes	309
	Substrate Cycles Amplify Metabolic Signals	309
17.3	Metabolism in Context: Precursors Formed	
	by Muscle Are Used by Other Organs	310
SEC1	FION 8	
The	Citric Acid Cycle	315
Chap	oter18 Preparation for the Cycle	317
18.1	Pyruvate Dehydrogenase Forms Acetyl	
	Coenzyme A from Pyruvate	318
	The Synthesis of Acetyl Coenzyme A from Pyruvate	
	Requires Three Enzymes and Five Coenzymes	319
	Flexible Linkages Allow Lipoamide to Move Between	
	Different Active Sites	321

xxii Contents		
18.2 The Pyruvate Dehydrogenase Complex		20.2 Ox
Is Regulated by Two Mechanisms	323	on
Clinical Insight Defective Regulation of Pyruvate		The
Dehydrogenase Results in Lactic Acidosis	324	۱ Fla
NEW Clinical Insight Enhanced Pyruvate Dehydroger	nase	LICI (
Kinase Activity Facilitates the Development of Cancer	325	The
Clinical Insight The Disruption of Pyruvate	225	(
Metadolism is the Cause of Berlderi	325	20.3 The
Chanter10 Howesting Electrons from the Cycle	220	and
10.1 The Citrie Acid Cycle Consists of Type Stores	323	NEW The
19.1 The Clific Acid Cycle Consists of Two Stages	330	r Llh
19.2 Stage One Oxidizes Two Carbon Atoms	220	F
Citrate Synthase Forms Citrate from Oxaloacetate	550	Ele
and Acetyl Coenzyme A	330	T
The Mechanism of Citrate Synthase Prevents		The
Undesirable Reactions	331	(Cvt
Citrate Is Isomerized into Isocitrate	332	Cyt
Ketoolutarate	337	🔲 Bio
Succinyl Coenzyme A Is Formed by the Oxidative	552	Τοχ
Decarboxylation of Alpha-Ketoglutarate	333	F
19.3 Stage Two Regenerates Oxaloacetate		
and Harvests Energy-Rich Electrons	333	Chapter
A Compound with High Phosphoryl-Transfer Potential		21.1 A F
Is Generated from Succinyl Coenzyme A	333	ATE
Biochemical Energy	334	ι
Oxaloacetate Is Regenerated by the Oxidation of		Pro
Succinate	335	r Bot
The Citric Acid Cycle Produces High-Transfer-Potential		Not
Electrons, a Nucleoside Triphosphate, and	225	Pro
10.4 The Citric Acid Cycle Is Pequilated	220	21.2 Shi
The Citric Acid Cycle Is Controlled at Several Points	338	Mit
The Citric Acid Cycle Is a Source of Biosynthetic	550	Ele
Precursors	339	Th a
The Citric Acid Cycle Must Be Capable of Being		t
Rapidly Replenished	339	Mit
New Clinical Insight Detects in the Citric Acid	240	E
Cycle Contribute to the Development of Cancer	340	21.3 Ce
19.5 The Glyoxylate Cycle Enables Plants and	240	Ne
Bacteria to Convert Fats into Carbohydrates	340	The
		: The
		ł
Ovidative Phoenhandation	247	
Oxidative Enosphorylation	347	to t
Chapter 20 The Electron-Transport Chain	349	Oxi
20.1 Oxidative Phosphorylation in Eukaryotes		Γ
Takes Place in Mitochondria	350	Cli
Mitochondria Are Bounded by a Double Membrane	350	Dis
Biological Insight Mitochondria Are the Result of an		Pov
Endosymbiotic Event	351	(

		20.2	Oxidative Phosphorylation Depends	
	323		on Electron Transfer	352
			The Electron-Transfer Potential of an Electron Is	
	324		Measured As Redox Potential	352
ena	ase		Electron Flow Through the Electron-Transport	252
r	325		Chain Creates a Proton Gradient	353
			Ovidation Reduction Reactions	254
	325	20.2		554
		20.3	The Respiratory Chain Consists of Proton Pumps	257
2	329		and a Physical Link to the Citric Acid Cycle	357
-	220	NEW	Respiratory Chain at NADH O Ovidereductase	257
	550		Ubiquinol Is the Entry Point for Electrons from	557
	220		$FADH_2$ of Flavoproteins	358
	330		Electrons Flow from Ubiquinol to Cytochrome <i>c</i>	
	330		Through Q-Cytochrome <i>c</i> Oxidoreductase	359
	550		The Q Cycle Funnels Electrons from a Two-Electron	
	331		Carrier to a One-Electron Carrier and Pumps Protons	359
	332		Cytochrome c Oxidase Catalyzes the Reduction of	
			Molecular Oxygen to Water	360
	332		Biological Insight The Dead Zone: Too Much Respiration	n 362
			Toxic Derivatives of Molecular Oxygen Such As Superoxide	
	333		Radical Are Scavenged by Protective Enzymes	363
	333	Chap	oter 21 The Proton-Motive Force	367
		21.1	A Proton Gradient Powers the Synthesis of ATP	368
	333	21.11	ATP Synthase Is Composed of a Proton-Conducting	500
			Unit and a Catalytic Unit	369
	334		Proton Flow Through ATP Synthase Leads to the	
	225		Release of Tightly Bound ATP	370
	222		Rotational Catalysis Is the World's Smallest	
			Molecular Motor	371
	335		Proton Flow Around the c Ring Powers ATP Synthesis	371
	338	21.2	Shuttles Allow Movement Across	
	338		Mitochondrial Membranes	373
	550		Electrons from Cytoplasmic NADH Enter	
	339		Mitochondria by Shuttles	373
			The Entry of ADP into Mitochondria Is Coupled to	275
	339		the Exit of AIP	375
			Mitochondrial Iransporters Allow Metabolite Exchange	276
	340	21.2	Calledar Degrination la Degrulated legates	570
		21.3	Cellular Respiration is Regulated by the	270
	340		Need for ATP	376
	540		30 Molecules of ATP	376
			The Rate of Oxidative Phosphorylation Is Determined	570
			by the Need for ATP	377
	~		NEW Biological Insight Regulated Uncoupling Leads	577
	347		to the Generation of Heat	378
	340		Avidative Phosphonulation Can Bo Inhibited at	570
	3-13		Many Stages	280
	250	36	Clinical Insight Mitschondrial Disasses Are Daine	500
	220 220	ø	Discovered in Increasing Numbers	201
	220		Discovered in increasing willibers	101
n	251		Control Motif of Piconorgatics	201
	221		Central Moul of bloenergetics	201

SECTION 10 The Light Reactions of Photosynthesis and the Calvin Cycle

and	the Calvin Cycle	387
Chap	ter 22 The Light Reactions	389
22.1	Photosynthesis Takes Place in Chloroplasts	390
	Biological Insight Chloroplasts, Like Mitochondria, Arose from an Endosymbiotic Event	391
22.2	Photosynthesis Transforms Light Energy into Chemical Energy Chlorophyll Is the Primary Receptor in Most	391
	Photosynthetic Systems	392
	Light-Harvesting Complexes Enhance the Efficiency of Photosynthesis	393
	Biological Insight Chlorophyll in Potatoes Suggests the Presence of a Toxin	395
22.3	Two Photosystems Generate a Proton Gradient and NADPH Photosystem LUses Light Energy to Generate	395
	Reduced Ferredoxin, a Powerful Reductant Photosystem II Transfers Electrons to Photosystem I	396
	and Generates a Proton Gradient	397
	The Oxidation of Water Achieves Oxidation-Reduction Balance and Contributes Protons to the	398
	Proton Gradient	398
22.4	A Proton Gradient Drives ATP Synthesis The ATP Synthase of Chloroplasts Closely Resembles	400
	I hat of Mitochondria Cyclic Electron Flow Through Photosystem I Leads to the Production of ATP Instead of NADPH	400
	The Absorption of Eight Photons Yields One O_2 ,	101
	Two NADPH, and Three ATP Molecules The Components of Photosynthesis Are Highly	402
	Biological Insight Many Herbicides Inhibit the Light	402
	Reactions of Photosynthesis	403
Chap	oter 23 The Calvin Cycle	407
23.1	The Calvin Cycle Synthesizes Hexoses from Carbon Dioxide and Water	407
	to Form Two Molecules of 3-Phosphoglycerate Hexose Phosphates Are Made from Phosphoglycerate,	408
	and Ribulose 1,5-bisphosphate Is Regenerated Three Molecules of ATP and Two Molecules of NADPH Are Used to Bring Carbon Dioxide to the Level of	409
	a Hexose	412
	Biological Insight A Volcanic Eruption Can Affect Photosynthesis Worldwide Starch and Sucrose Are the Major Carbohydrate	412
	Stores in Plants	412
	Biological Insight Why Bread Becomes Stale: The Role of Starch	413

Contents	xxiii
----------	-------

23.2	The Calvin Cycle Is Regulated by the	
	Environment	414
	Thioredoxin Plays a Key Role in Regulating the	
	Calvin Cycle	414
	Rubisco Also Catalyzes a Wasteful Oxygenase Reaction	415
	The C ₄ Pathway of Tropical Plants Accelerates	
	Photosynthesis by Concentrating Carbon Dioxide	416
	Crassulacean Acid Metabolism Permits Growth in	
	Arid Ecosystems	418

SECTION 11 Glycogen Metabolism and the Pentose Phospate Pathway

Chapter 24 Glycogen Degradation42324.1 Glycogen Breakdown Requires Several Enzymes
Phosphorylase Cleaves Glycogen to Release Glucose
I-nhosphate424

	, , , , , , , , , , , , , , , , , , , ,	
	1-phosphate	424
	A Debranching Enzyme Also Is Needed for the	
	Breakdown of Glycogen	425
	Phosphoglucomutase Converts Glucose T-phosphate	420
	Into Glucose 6-phosphate	426
	Enzyme Absent from Muscle	126
- ∧ -	Describer desse la Desculated by Allesteric	420
24.2	Phosphorylase is Regulated by Allosteric	427
	Interactions and Reversible Phosphorylation	427
	Intracellular Energy Charge	128
	Liver Phosphorylase Produces Glucose for Lise	720
	by Other Tissues	428
	Phosphorylase Kinase Is Activated by Phosphorylation	
	and Calcium Ions	429
<u> </u>	Clinical Insight Hers Disease Is Due to a	
	Phosphorylase Deficiency	430
24.3	Epinephrine and Glucagon Signal the Need	
	for Glycogen Breakdown	430
	G Proteins Transmit the Signal for the Initiation	
	of Glycogen Breakdown	430
	Glycogen Breakdown Must Be Rapidly Turned	
	Off When Necessary	432
	NEW Biological Insight Glycogen Depletion Coincides	
	with the Onset of Fatigue	432

Chapter 25 Glycogen Synthesis43725.1 Glycogen Is Synthesized and Degraded

offedgen is synthesized and begraded	
by Different Pathways	437
UDP-Glucose Is an Activated Form of Glucose	438
Glycogen Synthase Catalyzes the Transfer of	
Glucose from UDP-Glucose to a Growing Chain	438
A Branching Enzyme Forms Alpha-1,6 Linkages	439
Glycogen Synthase Is the Key Regulatory Enzyme	
in Glycogen Synthesis	440
Glycogen Is an Efficient Storage Form of Glucose	440
Metabolism in Context: Glycogen Breakdown	
and Synthesis Are Reciprocally Regulated	441
	by Different Pathways UDP-Glucose Is an Activated Form of Glucose Glycogen Synthase Catalyzes the Transfer of Glucose from UDP-Glucose to a Growing Chain A Branching Enzyme Forms Alpha-1,6 Linkages Glycogen Synthase Is the Key Regulatory Enzyme in Glycogen Synthesis Glycogen Is an Efficient Storage Form of Glucose Metabolism in Context: Glycogen Breakdown and Synthesis Are Reciprocally Regulated

xxiv	Contents		
	Protein Phosphatase 1 Reverses the Regulatory	4.41	27.3
	Insulin Stimulates Glycogen Synthesis by Inactivating	441	
	Glycogen Synthase Kinase	443	
Ŧ	Glycogen Metabolism in the Liver Regulates the Blood-Glucose Level	443	27.4
8	Clinical Insight Diabetes Mellitus Results from Insulin Insufficiency and Glucagon Excess	444	
8	Clinical Insight A Biochemical Understanding of Glycogen-Storage Diseases Is Possible	445	
Chap	ter 26 The Pentose Phosphate Pathway	451	Chan
26 .1	The Pentose Phosphate Pathway Yields NADPH		28.1
	and Five-Carbon Sugars	452	
	Conversion of Glucose 6-phosphate into Ribulose		
	5-phosphate	452	
	Are Linked by Transketolase and Transaldolase	452	
26.2	Metabolism in Context: Glycolysis and the Pentose	e	NEW
	Phosphate Pathway Are Coordinately Controlled The Rate of the Pentose Phosphate Pathway Is	456	
	Controlled by the Level of NADP' The Fate of Glucose 6-phosphate Depends on the	456	
	Need for NADPH, Ribose 5-phosphate, and ATP	456	
26.3	Glucose 6-phosphate Dehydrogenase	450	3
*	Lessens Uxidative Stress	459	
φ	Deficiency Causes a Drug-Induced Hemolytic Anemia	459	3
۲	Biological Insight A Deficiency of Glucose 6-phospha	te	28.2
	in Some Circumstances	460	
SEC1	FION 12		
Fatt	y Acid and Lipid Metabolism	463	
Chap	oter 27 Fatty Acid Degradation	465	*
27.1	Fatty Acids Are Processed in Three Stages	465	ר סר
NEW	Triacylglycerols Are Hydrolyzed by Hormone-	166	20.3
	Fatty Acids Are Linked to Coenzyme A Before They	400	
	Are Oxidized	467	
8	Clinical Insight Pathological Conditions Result If Fatt	y 460	
		400	28.4
	by Fatty Acid Oxidation	469	
	The Complete Oxidation of Palmitate Yields 106 Molecules of ATP	470	Chap
27.2	The Degradation of Unsaturated and		
	Odd-Chain Fatty Acids Requires	//71	29.1
	An Isomerase and a Reductase Are Required for	11	
	the Oxidation of Unsaturated Fatty Acids	471	
	Udd-Chain Fatty Acids Yield Propionyl CoA in the Final Thiolysis Step	473	

	27.3	Ketone Bodies Are Another Fuel Source	
441		Derived from Fats	473
		Ketone-Body Synthesis Takes Place in the Liver	473
443		Animals Cannot Convert Fatty Acids into Glucose	474
	274	Metabolism in Context [,] Fatty Acid Metabolism Is a	
443	27.4	Source of Insight into Various Physiological States	475
		Diabetes Can Lead to a Life Threatening Excess of	475
444		Ketone-Body Production	/175
		Ketone Bodies Are a Crucial Fuel Source	775
115		During Starvation	476
440			
451			
	Cnap	ter 28 Fatty Acid Synthesis	48 I
450	28.1	Fatty Acid Synthesis Takes Place in Three Stages	482
452		Citrate Carries Acetyl Groups from Mitochondria	
		to the Cytoplasm	482
150		Several Sources Supply NADPH for Fatty	
452		Acid Synthesis	483
152		The Formation of Malonyl CoA Is the Committed Step	40.2
452		In Fatty Acid Synthesis	483
ose	NEW	Fatty Acid Synthesis Consists of a Series of Condensation,	40.4
456		Reduction, Denydration, and Reduction Reactions	484
		of Acetul CoA 14 Malaculas of NADRU	
456		of Acetyl COA, 14 Molecules of NADER,	106
150		Eatty Acids Are Synthesized by a	400
456		Multifunctional Enzyme Complex in Animals	486
	ন্থ	Clinical Insight Eatty Asid Complex In Administra	100
459	φ	Clinical Insignt Fally Acid Synthase Inhibitors	107
se	Ъ.		407
459	8	Clinical Insight A Small Fatty Acid That Causes	
hate		Big Problems	487
	28.2	Additional Enzymes Elongate and Desaturate	
460		Fatty Acids	488
		Membrane-Bound Enzymes Generate Unsaturated	
		Fatty Acids	488
463		Eicosanoid Hormones Are Derived from	
705		Polyunsaturated Fatty Acids	488
465	*	Clinical Insight Aspirin Exerts Its Effects by Covalently	/
465		Modifying a Key Enzyme	489
405	28.3	Acetyl CoA Carboxylase Is a Key Regulator	
466		of Fatty Acid Metabolism	489
		Acetyl CoA Carboxylase Is Regulated by Conditions	
467		in the Cell	489
atty		Acetyl CoA Carboxylase Is Regulated by a	
/68		Variety of Hormones	490
400	28.4	Metabolism in Context: Ethanol Alters Energy	
400		Metabolism in the Liver	491
409			
470	Chan	tor 20. Lipid Synthesic: Storage Lipids	
470	Unap	Description and Chalasters	407
		rnospholipias, and Cholesterol	49/
	29.1	Phosphatidate Is a Precursor of Storage Lipids	
471		and Many Membrane Lipids	497
		Triacylglycerol Is Synthesized from Phosphatidate	
471		in Two Steps	498
		Phospholipid Synthesis Requires Activated Precursors	498
4/3		Sphingolipids Are Synthesized from Ceramide	500

*	Clinical Insight Gangliosides Serve As Binding Sites for Pathogens	501
Ŧ	Clinical Insight Disrupted Lipid Metabolism Results in Respiratory Distress Syndrome and Tay-Sachs Disease	501
NEW	Phosphatidic Acid Phosphatase Is a Key Regulatory Enzyme in Lipid Metabolism	502
29.2	Cholesterol Is Synthesized from Acetyl	
	Coenzyme A in Three Stages	503
	Cholesterol	503
	Squalene (C_{30}) Is Synthesized from Six Molecules of	F04
	Squalene Cyclizes to Form Cholesterol	504 505
29.3	The Regulation of Cholesterol Synthesis Takes Place at Several Levels	506
29.4	Lipoproteins Transport Cholesterol and	
	Triacylglycerols Throughout the Organism Low-Density Lipoproteins Play a Central Role in	508
ক্ত	Cholesterol Metabolism	509
¥ ¥	Leads to Hypercholesterolemia and Atherosclerosis	510
¥	Atherosclerosis	512
29.5	Cholesterol Is the Precursor of Steroid Hormones	512
	Steroid Hormones Are Crucial Signal Molecules	512
	Vitamin D Is Derived from Cholesterol by the Energy of Sunlight	513
1	Clinical Insight Vitamin D Is Necessary for Bone Development	513
	Clinical Insight Androgens Can Be Used to Artificially Enhance Athletic Performance	514
	Oxygen Atoms Are Added to Steroids by Cytochrome	
	P450 Monooxygenases Metabolism in Context: Ethanol Also Is Processed	515
	by the Cytochrome P450 System	515
CECT		
The	Metabolism of Nitrogen-Containing	
Mole	ecules	521
Chap	ter 30 Amino Acid Degradation	
	and the Urea Cycle	523
30.1	Nitrogen Removal Is the First Step in the	52.4
	Alpha-Amino Groups Are Converted into Ammonium	524
	lons by the Oxidative Deamination of Glutamate	524
	Peripheral Tissues Transport Nitrogen to the Liver	525
30.2	Ammonium Ion Is Converted into Urea in Most	526
	The Urea Cycle Is Linked to Gluconeogenesis	528

Clinical Insight Metabolism in Context: Inherited Defects of the Urea Cycle Cause Hyperammonemia

۲	NEW Biological Insight Hibernation Presents Nitrogen Disposal Problems	529
۲	Biological Insight Urea Is Not the Only Means of Disposing of Excess Nitrogen	530
30.3	Carbon Atoms of Degraded Amino Acids Emerge As Major Metabolic Intermediates Pyruvate Is a Point of Entry into Metabolism Oxaloacetate Is Another Point of Entry into Metabolism	530 531
	Alpha-Ketoglutarate Is Yet Another Point of Entry	552
	Into Metabolism Succinyl Coenzyme A Is a Point of Entry for Several Nonpolar Amino Acids	532 533
	The Branched-Chain Amino Acids Yield Acetyl Coenzyme A, Acetoacetate, or Succinyl Coenzyme A Oxygenases Are Required for the Degradation of	533
	Aromatic Amino Acids Methionine Is Degraded into Succinyl Coenzyme A	534 536
¥	Clinical Insight Inborn Errors of Metabolism Can Disrupt Amino Acid Degradation	536
Chap	ter 31 Amino Acid Synthesis	541
31.1	The Nitrogenase Complex Fixes Nitrogen The Molvbdenum-Iron Cofactor of Nitrogenase Binds	542
	and Reduces Atmospheric Nitrogen Ammonium Ion Is Incorporated into an Amino Acid	543
31.2	Amino Acids Are Made from Intermediates	543
51.2	of Major Pathways Human Beings Can Synthesize Some Amino Acids	544
	but Must Obtain Others from the Diet Some Amino Acids Can Be Made by Simple Transamination Reactions	545 545
	Serine, Cysteine, and Glycine Are Formed from	546
	Tetrahydrofolate Carries Activated One-Carbon Units S-Adenosylmethionine Is the Major Donor of	546
375	Methyl Groups	547
ŝ	Clinical Insight High Homocysteine Levels Correlate with Vascular Disease	548
31.3	Feedback Inhibition Regulates Amino Acid Biosynthesis The Committed Step Is the Common Site of	549
	Regulation Rearched Pathways Require Sophisticated	549
	Regulation	549
Chap	ter 32 Nucleotide Metabolism	555
32.1	An Overview of Nucleotide Biosynthesis and Nomenclature.	556
32.2	The Pyrimidine Ring Is Assembled	FF7
	CTP Is Formed by the Amination of UTP	557 558
	Kinases Convert Nucleoside Monophosphates	
NEW	into Nucleoside Triphosphates Salvage Pathways Recycle Pyrimidine Bases	559 559

xxvi Contents

32.3	The Purine Ring Is Assembled on Ribose Phosphate AMP and GMP Are Formed from IMP	560	
NEW	Enzymes of the Purine-Synthesis Pathway Are Associated with One Another in Vivo Bases Can Be Recycled by Salvage Pathways	560 562	
32.4	Ribonucleotides Are Reduced to Deoxyribonucleotides Thymidylate Is Formed by the Methylation of Deoxyuridylate Clinical Insight Several Valuable Anticancer Drugs Block the Synthesis of Thymidylate	563 563 564	
32.5	Nucleotide Biosynthesis Is Regulated by Feedback Inhibition	565	
	Pyrimidine Biosynthesis Is Regulated by Aspartate Transcarbamoylase	565	
	by Feedback Inhibition at Several Sites The Synthesis of Deoxyribonucleotides Is Controlled	566	
32.6	Disruptions in Nucleotide Metabolism Can Cause Pathological Conditions	567	
¥	Clinical Insight The Loss of Adenosine Deaminase Activity Results in Severe Combined Immunodeficiency	568	
	Clinical Insight Gout Is Induced by High Serum Levels of Urate	568	
1990	Clinical Insight Lesch-Nyhan Syndrome Is a Dramatic Consequence of Mutations in a Salvage-Pathway Enzyme	569	
866	NEW Clinical Insight Folic Acid Deficiency Promotes Birth Defects Such As Spina Bifida	569	
PART III SYNTHESING THE MOLECULES OF LIFE			

SECT Nuc	FION 14 leic Acid Structure and DNA Replication	575
Chap	ter 33 The Structure of Informational	
Macr	omolecules: DNA and RNA	577
33.1	A Nucleic Acid Consists of Bases Linked to a	
	Sugar–Phosphate Backbone	578
	DNA and RNA Differ in the Sugar Component and	
	One of the Bases	578
	Nucleotides Are the Monomeric Units of Nucleic Acids	579
	DNA Molecules Are Very Long and Have Directionality	580
33.2	Nucleic Acid Strands Can Form a	
	Double-Helical Structure	581
	The Double Helix Is Stabilized by Hydrogen Bonds	
	and the Hydrophobic Effect	581
	The Double Helix Facilitates the Accurate	
	Transmission of Hereditary Information	583
	Meselson and Stahl Demonstrated That Replication	
	Is Semiconservative	583
	The Strands of the Double Helix Can Be Reversibly	
	Separated	585

33.3	DNA Double Helices Can Adopt Multiple Forms Z-DNA Is a Left-Handed Double Helix in Which	585
	Backbone Phosphoryl Groups Zigzag The Major and Minor Grooves Are Lined by	586
	Sequence-Specific Hydrogen-Bonding Groups Double-Stranded DNA Can Wrap Around Itself	587
	to Form Supercoiled Structures	587
33.4	Eukaryotic DNA Is Associated with Specific Proteins Nucleosomes Are Complexes of DNA and Histones Eukaryotic DNA Is Wrapped Around Histones to	<mark>589</mark> 589
	Form Nucleosomes	590
86	Clinical Insight Damaging DNA Can Inhibit Cancer-Cell Growth	592
33.5	RNA Can Adopt Elaborate Structures	592
Chap	ter 34 DNA Replication	597
34.1	DNA Is Replicated by Polymerases	598
	Formation	598
NEW	Complementarity of Bases	600
NEW	The Separation of DNA Strands Requires Specific	<u> </u>
	Helicases and AIP Hydrolysis	600 1602 1
Ŧ	Clinical Insight Bastarial Tanaisomerase Is a	J 002
φ	Therapeutic Target	602
	Many Polymerases Proofread the Newly Added Bases and Excise Errors	603
34.2	DNA Benlication Is Highly Coordinated	604
J7.2	DNA Replication is Escherichia coli Begins at a	604
	An RNA Primer Synthesized by Primase Enables	004
	DNA Synthesis to Begin	604
	One Strand of DNA Is Made Continuously and the	
	Other Strand Is Synthesized in Fragments	605
	DNA Replication Requires Highly Processive Polymerases The Leading and Lagging Strands Are Synthesized	605
	in a Coordinated Fashion DNA Synthesis Is More Complex in Eukaryotes Than	606
	in Bacteria	608
	Telomeres Are Unique Structures at the Ends of Linear Chromosomes	608
8	Clinical Insight Telomeres Are Replicated by	
	Telomerase, a Specialized Polymerase That Carries Its Own RNA Template	609
-		
Chap	ter 35 DNA Repair and Recombination	613
35.1	Errors Can Arise in DNA Replication	614
\$	Clinical Insight Some Genetic Diseases Are Caused by the Expansion of Repeats of Three Nucleotides	614
	Bases Can Be Damaged by Oxidizing Agents,	
	Alkylating Agents, and Light	615
35.2 T	DNA Damage Can Be Detected and Repaired The Presence of Thymine Instead of Uracil in DNA	617
-	Permits the Repair of Deaminated Cytosine	619

86	Clinical Insight Many Cancers Are Caused by the Defective Repair of DNA	619
B	Clinical Insight Many Potential Carcinogens Can Be Detected by Their Mutagenic Action on Bacteria	620
35.3	DNA Recombination Plays Important Roles	C 2 1
	Double Strand Breaks Can Be Repaired by	621
	Recombination DNA Recombination Is Important in a Variety of	621
	Biological Processes	622
SECT	TION 15	
RNA	Synthesis, Processing, and Regulation	627
Chap	ter 36 RNA Synthesis and Regulation in Bacteria	629
36.1	Cellular RNA Is Synthesized by RNA Polymerases	630
NEW	Genes Are the Transcriptional Units RNA Polymerase Is Composed of Multiple Subunits	631 631
36.2	RNA Synthesis Comprises Three Stages	631
	Transcription Is Initiated at Promoter Sites on the	C 21
	Sigma Subunits of RNA Polymerase Recognize	631
	Promoter Sites	632
	RNA Strands Grow in the 5'-to-3' Direction Elongation Takes Place at Transcription Bubbles	633
	That Move Along the DNA Template	634
	An RNA Hairpin Followed by Several Uracil Residues	634
	The Rho Protein Helps Terminate the Transcription of Some Genes	635
	Precursors of Transfer and Ribosomal RNA Are Cleaved	636
. ا	Clinical Insight Some Antibiotics Inhibit Transcription	637
36.3	The <i>lac</i> Operon Illustrates the Control of	
5015	Bacterial Gene Expression	638
	An Operon Consists of Regulatory Elements and	620
	Ligand Binding Can Induce Structural Changes	030
	in Regulatory Proteins	639
	Contact RNA Polymerase	639
<u></u>	NEW Clinical and Biological Insight Many Bacterial	
	Cells Release Chemical Signals That Regulate Gene	640
NEW	Some Messenger RNAs Directly Sense Metabolite	0.0
	Concentrations	640
Chap	ter 37 Gene Expression in Eukaryotes	645
37.1	Eukaryotic Cells Have Three Types of RNA Polymerases	646
37.2	RNA Polymerase II Requires Complex Regulation	648
	The TFIID Protein Complex Initiates the Assembly	640
	Enhancer Sequences Can Stimulate Transcription	049
	at Start Sites Thousands of Bases Away	649

	Contents	xxvii
86	Clinical Insight Inappropriate Enhancer Use May Cause Cancer	650
	Multiple Transcription Factors Interact with Eukaryotic Promoters and Enhancers	650
1980	NEW Clinical Insight Induced Pluripotent Stem Cells Can Be Generated by Introducing Four Transcription Factors into Differentiated Cells	650
37.3	Gene Expression Is Regulated by Hormones	651
	Nuclear Hormone Receptors Have Similar Domain Structures	651
	and Corepressors	652
(1988)	Clinical Insight Steroid-Hormone Receptors Are Targets for Drugs	653
37.4	Histone Acetylation Results in Chromatin Remodeling	654
NEW	in the Regulation of Transcription Histone Deacetvlases Contribute to Transcriptional	654
	Repression	656
Chap	ter 38 RNA Processing in Eukaryotes	661
38.1	Mature Ribosomal RNA Is Generated by the	
	Cleavage of a Precursor Molecule	662
38.2	Iranster RNA Is Extensively Processed	662
38.3	Sequences at the Ends of Introns Specify Splice Sites	663
	in mRNA Precursors	664
	Small Nuclear RNAs in Spliceosomes Catalyze the Splicing of mRNA Precursors	665
æ	Clinical Insight Mutations That Affect Pre-mRNA Splicing Cause Disease	666
	Clinical Insight Most Human Pre-mRNAs Can Be Spliced in Alternative Ways to Yield Different Proteins	667
NUTING	The Transcription and Processing of mRNA Are Coupled	d 667
NEW	RNA Editing Changes the Proteins Encoded by mRNA	668
58.4	KINA Can Function As a Catalyst	669

SECTION 16

Protein Synthesis and Recombinant DNA Techniques

Chapter 39 The Genetic Code				
39.1	The Genetic Code Links Nucleic Acid			
	and Protein Information	676		
	The Genetic Code Is Nearly Universal	676		
	Transfer RNA Molecules Have a Common Design	677		
	Some Transfer RNA Molecules Recognize More Than			
	One Codon Because of Wobble in Base-Pairing	679		
	The Synthesis of Long Proteins Requires a Low Error			
	Frequency	680		
39.2	Amino Acids Are Activated by Attachment			
	to Transfer RNA	680		
	Amino Acids Are First Activated by Adenylation	681		

xxvii	Contents	
	Aminoacyl-tRNA Synthetases Have Highly Discriminating Amino Acid Activation Sites	682
	Increases the Fidelity of Protein Synthesis Synthetases Recognize the Anticodon Loops and	682
	Acceptor Stems of Transfer RNA Molecules	682
39.3	A Ribosome Is a Ribonucleoprotein Particle	602
	Ribosomal RNAs Play a Central Role in Protein	683
	Synthesis	683
	Messenger RNA Is Translated in the 5'-to-3' Direction	684
Chap	ter 40 The Mechanism of Protein Synthesis	689
40.1	Protein Synthesis Decodes the Information	
	in Messenger RNA	689
	Ribosomes Have Three tRNA-Binding Sites That Bridge the 30S and 50S Subunits	690
	The Start Signal Is AUG (or GUG) Preceded by Several	000
	Bases That Pair with 16S Ribosomal RNA	690
	Formylmethionyl Transfer RNA	691
	Formylmethionyl-tRNA _f Is Placed in the P Site of	
	the Ribosome in the Formation of the 70S Initiation Complex	692
	Elongation Factors Deliver Aminoacyl-tRNA to the	
40.2	Ribosome	692
40.2	Synthesis	693
	The Formation of a Peptide Bond Is Followed by the	
	GTP-Driven Translocation of tRNAs and mRNA Protein Synthesis Is Terminated by Release Factors	693
	That Read Stop Codons	695
40.3	Bacteria and Eukaryotes Differ in the	
3	Initiation of Protein Synthesis	696
¢	Clinical insight Mutations in Initiation Factor 2 Cause a Curious Pathological Condition	697
40.4	A Variety of Biomolecules Can Inhibit	
	Protein Synthesis	698
¥	Clinical Insight Some Antibiotics Inhibit Protein Synthesis	698
Ŧ	Clinical Insight Diphtheria Toxin Blocks Protein Synthesis in Eukaryotes by Inhibiting Translocation	699
*	Clinical Insight Ricin Fatally Modifies 28S Ribosomal RNA	700
40.5	Ribosomes Bound to the Endoplasmic Reticulum	
NEW	Manufacture Secretory and Membrane Proteins Protein Synthesis Begins on Ribosomes That Are Free	700
	in the Cytoplasm	701
	Signal Sequences Mark Proteins for Translocation Across the Endoplasmic Reticulum Membrane	701

40.6	Protein Synthesis Is Regulated by a Number of Mechanisms Messenger RNA Use Is Subject to Regulation The Stability of Messenger RNA Also Can Be Regulated Small RNAs Can Regulate mRNA Stability and Use	702 702 703 703		
Chap	ter 41 Recombinant DNA Techniques	709		
41.1	Reverse Genetics Allows the Synthesis			
	of Nucleic Acids from a Protein Sequence Protein Sequence Is a Guide to Nucleic Acid Information DNA Probes Can Be Synthesized by Automated Method	709 1 710 s 710		
41.2	Recombinant DNA Technology Has			
	Revolutionized All Aspects of Biology Restriction Enzymes Split DNA into Specific Fragments Restriction Fragments Can Be Separated by Gel	711 712		
	Electrophoresis and Visualized	712		
	Restriction Enzymes and DNA Ligase Are Key Tools for Forming Recombinant DNA Molecules	713		
41.3	Eukaryotic Genes Can Be Manipulated	714		
	with Considerable Precision	714		
	Expressed in Host Cells	714		
	Estrogen-Receptor cDNA Can Be Identified by			
	Screening a cDNA Library	715		
	Synthesized Protein	716		
	Specific Genes Can Be Cloned from Digests of			
	Genomic DNA	717		
	DNA Can Be Sequenced by the Controlled Termination of Replication	717		
.	Clinical and Biological Insight "Next-Generation"			
	Sequencing Methods Enable the Rapid			
	Determination of a Whole Genome Sequence	719		
	Selected DNA Sequences Can Be Greatly Amplified			
76	by the Polymerase Chain Reaction	720		
8	Clinical and Biological Insight PCR Is a Powerful			
	and Studies of Molecular Evolution	722		
NEW	Gene-Expression Levels Can Be Comprehensively			
	Examined	722		
Appendices				
Glossary				
Answers to Problems				
Index				
Selected Readings				
(online at www.whfreeman.com/tymoczko2e)				

Chapter 1: Biochemistry and the Unity of Life

Chapter 2: Water, Weak Bonds, and the Generation of Order Out of Chaos

Biochemistry Helps Us Understand Our World

The ultimate goal of all scientific endeavors is to develop a deeper, richer understanding of ourselves and the world in which we live. Biochemistry has had and will continue to have an extensive role in helping us to develop this understanding. *Biochemistry*, the study of living organisms at the molecular level, has shown us many of the details of the most fundamental processes of life. For instance, biochemistry has shown us how information flows from genes to molecules that have functional capabilities. In recent years, biochemistry has also unraveled some of the mysteries of the molecular generators that provide the energy that power living organisms. The realization that we can understand such essential life processes has significant philosophical implications. What does it mean, biochemically, to be human? What are the biochemical differences between a human being, a chimpanzee, a mouse, and a fruit fly? Are we more similar than we are different?

The understanding achieved through biochemistry is greatly influencing medicine and other fields. Although we may not be accustomed to thinking of illness in relation to molecules, illness is ultimately some sort of malfunction at the molecular level. The molecular lesions causing sickle-cell anemia, cystic fibrosis, hemophilia, and many other genetic diseases have been elucidated at the biochemical level. Biochemistry is also contributing richly to clinical diagnostics. For example, elevated levels of telltale enzymes in the blood reveal whether a patient has recently had a myocardial infarction (heart attack). Agriculture, too, is employing biochemistry to develop more effective, environmentally safer

herbicides and pesticides and to created genetically engineered plants that are, for example, more resistant to insects.

In this section, we will learn some of the key concepts that structure the study of biochemistry. We begin with an introduction to the molecules of biochemistry, followed by an overview of the fundamental unit of biochemistry and life itself the cell. Finally, we examine the weak reversible bonds that enable the formation of biological structures and permit the interplay between molecules that makes life possible.

\checkmark By the end of this section, you should be able to:

- ✓ 1 Describe the key classes of biomolecules and differentiate between them.
- 2 List the steps of the central dogma.
- 3 Identify the key features that differentiate eukaryotic cells from prokaryotic cells.
- 4 Describe the chemical properties of water and explain how water affects biochemical interactions.
- 5 Describe the types of noncovalent, reversible interactions and explain why reversible interactions are important in biochemistry.
- 6 Define pH and explain why changes in pH may affect biochemical systems.

CHAPTER

Biochemistry and the Unity of Life

- **1.1** Living Systems Require a Limited Variety of Atoms and Molecules
- 1.2 There Are Four Major Classes of Biomolecules
- 1.3 The Central Dogma Describes the Basic Principles of Biological Information Transfer
- 1.4 Membranes Define the Cell and Carry Out Cellular Functions

Despite their vast differences in mass—the African elephant has a mass 3×10^{18} times as great as that of the bacterium *E. coli*—and complexity, the biochemical workings of these two organisms are remarkably similar. [*E. coli*: Eye of Science/Photo Researchers. Elephant: Imagebroker/Alamy.]

A key goal of biochemistry, one that has been met with striking success, is to A understand what it means to be alive at the molecular level. Another goal is to extend this understanding to the organismic level—that is, to understand the effects of molecular manipulations on the life that an organism leads. For instance, understanding how the hormone insulin works at the molecular level illuminates how the organism controls the levels of fuels in its blood. Often, such understanding facilitates an understanding of disease states, such as diabetes, which results when insulin signaling goes awry. In turn, this knowledge can be a source of insight into how the disease can be treated.

Biochemistry has been an active area of investigation for more than a century. Much knowledge has been gained about how a variety of organisms manipulate energy and information. However, one of the most exciting outcomes of biochemical research has been the realization that all organisms have much in common biochemically. Organisms are remarkably uniform at the molecular *level*. This observation is frequently referred to as the unity of biochemistry, but, in reality, it illustrates the unity of life. French biochemist Jacques Monod encapsulated this idea in 1954 with the phrase "Anything found to be true of [the bacterium] *E. coli* must also be true of elephants." This uniformity reveals that all organisms on Earth have arisen from a common ancestor. A core of essential biochemical processes, common to all organisms, appeared early in the

evolution of life. The diversity of life in the modern world has been generated by evolutionary processes acting on these core processes through millions or even billions of years.

We begin our study of biochemistry by looking at commonalities. We will examine the molecules and molecular constituents that are used by all life forms and will then consider the rules that govern how biochemical information is accessed and how it is passed from one generation to the next. Finally, we will take an overview of the fundamental unit of life—the cell. This is just the beginning. All of the molecules and structures that we see in this chapter we will meet again and again as we explore the chemical basis of life.

1.1 Living Systems Require a Limited Variety of Atoms and Molecules

Ninety naturally occurring elements have been identified, yet only three oxygen, hydrogen, and carbon—make up 98% of the atoms in an organism. Moreover, the abundance of these three elements in life is vastly different from their abundance in Earth's crust (Table 1.1). What can account for the disparity between what is available and what organisms are made of?

One reason that oxygen and hydrogen are so common is the ubiquity of water, or "the matrix of life," as biochemist Albert Szent-Györgi called it. This tiny molecule—consisting of only three atoms—makes life on Earth possible. Indeed, current belief is that all life requires water, which is why so much effort has been made in recent decades to determine whether Mars had water in the past and whether it still does. The importance of water for life is so crucial that its presence is tantamount to saying that life could be present. We will consider the properties of water and how these properties facilitate biochemistry in Chapter 2.

After oxygen and hydrogen, the next most-common element in living organisms is carbon. Most large molecules in living systems are made up predominantly of carbon. Fuel molecules are made entirely of carbon, hydrogen, and oxygen.

	Composition in		
Element	Human beings (%)	Seawater (%)	Earth's crust (%)
Hydrogen	63	66	0.22
Oxygen	25.5	33	47
Carbon	9.5	0.0014	0.19
Nitrogen	1.4	<0.1	<0.1
Calcium	0.31	0.006	3.5
Phosphorus	0.22	<0.1	<0.1
Chloride	0.03	0.33	<0.1
Potassium	0.06	0.006	2.5
Sulfur	0.05	0.017	<0.1
Sodium	0.03	0.28	2.5
Magnesium	0.01	0.003	2.2
Silicon	<0.1	<0.1	28
Aluminum	<0.1	<0.1	7.9
Iron	<0.1	<0.1	4.5
Titanium	<0.1	<0.1	0.46
All others	<0.1	<0.1	<0.1

 Table 1.1
 Chemical compositions as percentage of total number of atoms

Note: Because of rounding, total percentages do not equal 100%.

Source: After E. Frieden, The chemical elements of life, Sci. Am. 227(1), 1972, p. 54.

Biological fuels, like the fuels that power machinery, react with oxygen to produce carbon dioxide and water. In regard to biological fuels, this reaction, called combustion, provides the energy to power the cell. As a means of seeing why carbon is uniquely suited for life, let us compare it with silicon, its nearest elemental relative. Silicon is much more plentiful than carbon in Earth's crust (see Table 1.1), and, like carbon, can form four covalent bonds—a property crucial to the construction of large molecules. However, carbon-to-carbon bonds are stronger than silicon-to-silicon bonds. This difference in bond strength has two important consequences. First, large molecules can be built with the use of carbon–carbon bonds as the backbone because of the stability of these bonds. Second, more energy is released when carbon-carbon bonds undergo combustion than when silicon reacts with oxygen. Thus, carbon-based molecules are stronger construction materials and are better fuels than silicon-based molecules. Carbon even has an advantage over silicon after it has undergone combustion. Carbon dioxide is readily soluble in water and can exist as a gas; thus, it remains in biochemical circulation, given off by one tissue or organism to be used by another tissue or organism. In contrast, silicon is essentially insoluble in reactions with oxygen. After it has combined with oxygen, it is permanently out of circulation.

Other elements have essential roles in living systems-notably, nitrogen, phosphorus, and sulfur. Moreover, some of the trace elements, although present in tiny amounts compared with oxygen, hydrogen, and carbon, are absolutely vital to a number of life processes. We will see specific uses of these elements as we proceed with our study of biochemistry.

1.2 There Are Four Major Classes of Biomolecules

Living systems contain a dizzying array of biomolecules. However, these biomolecules can be divided into just four classes: proteins, nucleic acids, lipids, and carbohydrates.

Proteins Are Highly Versatile Biomolecules

Much of our study of biochemistry will revolve around proteins. Proteins are constructed from 20 building blocks, called amino acids, linked by peptide bonds to form long unbranched polymers (Figure 1.1). These polymers fold into precise three-dimensional structures that facilitate a vast array of biochemical functions. Proteins serve as signal molecules (e.g., the hormone insulin signals that fuel is in the blood) and as receptors for signal molecules. Receptors convey to the cell that a signal has been received and initiates the cellular response. Thus, for example, insulin binds to its particular receptor, called the insulin receptor, and initiates the biological response to the presence of fuel in the blood. Proteins also play structural roles, allow mobility, and provide defenses against environmental 1 Describe the key classes of biomolecules and differentiate between them

Amino acids

Amino acid sequence

Figure 1.1 Protein folding. The three-dimensional structure of a protein is dictated by the sequence of amino acids that constitute the protein.

Adenosine triphosphate (ATP)

Figure 1.2 The structure of a nucleotide. A nucleotide (in this case, adenosine triphosphate) consists of a base (shown in blue), a five-carbon sugar (black), and at least one phosphoryl group (red).

Figure 1.3 The double helix. Two individual chains of DNA interact to form a double helix. The sugar-phosphate backbone of one of the two chains is shown in red; the other is shown in blue. The bases are shown in green, purple, orange, and yellow. dangers. Perhaps the most prominent role of proteins is that of *catalysts*—agents that enhance the rate of a chemical reaction without being permanently affected themselves. Protein catalysts are called *enzymes*. Every process that takes place in living systems depends on enzymes.

Nucleic Acids Are the Information Molecules of the Cell

As information keepers of the cell, the primary function of *nucleic acids* is to store and transfer information. They contain the instructions for all cellular functions and interactions. Like

proteins, nucleic acids are linear molecules. However, nucleic acids are constructed from only four building blocks called *nucleotides*. A nucleotide is made up of a five-carbon sugar, either a deoxyribose or a ribose, attached to a heterocyclic ring structure called a base and at least one phosphoryl group (Figure 1.2).

There are two types of nucleic acid: *deoxyribonucleic acid* (DNA) and *ribonucleic acid* (RNA). Genetic information is stored in DNA—the "parts list" that determines the nature of an organism. DNA is constructed from four deoxyribonucleotides, differing from one another only in the ring structure of the bases—adenine (A), cytosine (C), guanine (G), and thymine (T). The information content of DNA is the sequence of nucleotides linked together by phosphodiester linkages. DNA in all higher organisms exists as a double-stranded helix (**Figure 1.3**). In the double helix, the bases interact with one another— A with T and C with G.

RNA is a single-stranded form of nucleic acid. Some regions of DNA are copied as a special class of RNA molecules called messenger RNA (mRNA). Messenger RNA is a template for the synthesis of proteins. Unlike DNA, mRNA is frequently broken down after use. RNA is similar to DNA in composition with two exceptions: the base thymine (T) is replaced by the base uracil (U), and the sugar component of the ribonucleotides contains an additional hydroxyl (-OH) group.

Lipids Are a Storage Form of Fuel and Serve As a Barrier

Among the key biomolecules, *lipids* are much smaller than proteins or nucleic acids. Whereas proteins and nucleic acids can have molecular weights of thousands to millions, a typical lipid has a molecular weight of 1300. Moreover, lipids are not polymers made of repeating units, as are proteins and nucleic acids. A key characteristic of many biochemically important lipids is their dual chemical nature: part of the molecule is hydrophilic, meaning that it can dissolve in water, whereas the other part, made up of one or more hydrocarbon chains, is hydrophobic and cannot dissolve in water (Figure 1.4). This dual nature allows lipids to form barriers that delineate the cell and the cellular compartments. Lipids allow the development of "inside" and "outside" at a biochemical level. The hydrocarbon chains cannot interact with water and, instead, interact with those of other lipids to form a barrier, or membrane, whereas the water-soluble components interact with the aqueous environment on either side of the membrane. Lipids are also an important storage form of energy. As we will see, the hydrophobic component of lipids can undergo combustion to provide large amounts of cellular energy. Lipids are crucial signal molecules as well.

Figure 1.4 The dual properties of lipids. (A) One part of a lipid molecule is hydrophilic; the other part is hydrophobic. (B) In water, lipids can form a bilayer, constituting a barrier that separates two aqueous compartments.

Carbohydrates Are Fuels and Informational Molecules

Most of us already know that *carbohydrates* are an important fuel source for most living creatures. The most-common carbohydrate fuel is the simple sugar glucose. Glucose is stored in animals as *glycogen*, which consists of many glucose molecules linked end to end and having occasional branches (Figure 1.5). In plants, the storage form of glucose is starch, which is similar to glycogen in molecular composition.

There are thousands of different carbohydrates. They can be linked together in chains, and these chains can be highly branched, much more so than in glycogen or starch. Such chains of carbohydrates play important roles in helping cells to recognize one another. Many of the components of the cell exterior are decorated with various carbohydrates that can be recognized by other cells and serve as sites of cell-to-cell interactions.

QUICK QUIZ 1 Name the four classes of biomolecules and state an important function of each class.

Figure 1.5 The structure of glycogen. Glycogen is a branched polymer composed of glucose molecules. The protein identified by the letter G at the center of the glycogen molecule is required for glycogen synthesis (Chapter 25).

1.3 The Central Dogma Describes the Basic Principles of Biological Information Transfer

Information processing in all cells is quite complex. It increases in complexity as cells become part of tissues and as tissues become components of organisms. The scheme that underlies information processing at the level of gene expression was first proposed by Francis Crick in 1958.

Crick called this scheme the *central dogma*: information flows from DNA to RNA and then to protein. Moreover, DNA can be replicated. The basic tenants of this dogma are true, but, as we will see later, this scheme is not as simple as depicted.

✓ 2 List the steps of the central dogma.

Figure 1.6 DNA replication. When the two strands of a DNA molecule are separated, each strand can serve as a template for the synthesis of a new partner strand. DNA polymerase catalyzes replication.

As defined in the *Oxford English Dictionary*, to transcribe means to make a copy of (something) in writing; to copy out from an original; to write (a copy). DNA constitutes the heritable information—the *genome*. This information is packaged into discrete units called *genes*. It is this collection of genes that determines the physical nature of the organism. When a cell duplicates, DNA is copied and identical genomes are then present in the newly formed daughter cells. The process of copying the genome is called *replication*. A group of enzymes, collectively called *DNA polymerase*, catalyze the replication process (Figure 1.6).

Genes are useless in and of themselves. The information must be rendered accessible. This accessibility is achieved in the process of *transcription* through which one form of nucleic acid, DNA, is transcribed into another form, RNA. The enzyme *RNA polymerase* catalyzes this process (**Figure 1.7**). Which genes are transcribed, as well as when and where they are transcribed, is crucial to the fate of the cell. For instance, although each cell in a human body has the DNA information that encodes the instructions to make all tissues, this information is parceled out. The genes expressed in the liver are different from those expressed in the muscles and brain. *Indeed, it is this selective expression that defines the function of a cell or tissue*.

A key aspect of the selective expression of genetic information is the transcription of genes into mRNA. The information encoded in mRNA is realized in the process of *translation* because information is literally translated from one chemical form (nucleic acid) into another (protein). Proteins have been described as the workhorses of the cell, and *translation renders the genetic information into a functional form*. Translation takes place on large macromolecular complexes called *ribosomes*, consisting of RNA and protein (**Figure 1.8**).

Now that you have been introduced to the key biomolecules and have briefly examined the central dogma of information transfer, let us look at the platform—the cell—that contains and coordinates the biochemistry required for life.

Figure 1.7 The transcription of RNA. Transcription, catalyzed by RNA polymerase, makes an RNA copy of one of the strands of DNA.

Figure 1.8 Translation takes place on ribosomes. A ribosome decodes the information in mRNA and translates it into the amino acid sequence of a protein.

✓ 3 Identify the key features that differentiate eukaryotic cells from prokaryotic cells.

1.4 Membranes Define the Cell and Carry Out Cellular Functions

The cell is the basic unit of life. Cells can grow, replicate, and interact with their environment. Living organisms can be as simple as a single cell or as complex as a human body, which is composed of approximately 100 trillion cells. Every cell is delineated by a membrane that separates the inside of the cell from its environment. A *membrane* is a *lipid bilayer:* two layers of lipids organized with their hydrophobic chains interacting with one another and the hydrophilic head groups interacting with the environment (Figure 1.9).

There are two basic types of cells: eukaryotic cells and prokaryotic cells (**Figure 1.10**). The main difference between the two is the existence of membrane-enclosed compartments in *eukaryotes* and the absence of such compartments in *prokaryotes*. Prokaryotic cells, exemplified by the human gut bacterium *Escherichia coli*, have a relatively simple structure. They are surrounded by

Figure 1.10 Prokaryotic and eukaryotic cells. Eukaryotic cells display more internal structure than do prokaryotic cells. Components within the interior of a eukaryotic cell, most notably the nucleus, are defined by membranes. [Micrographs: (A) Courtesy of I. D. J. Burdett and R. G. E. Murray; (B) from P. C. Cross and K. L. Mercer, *Cell and Tissue Ultrastructure: A Functional Perspective* (W. H. Freeman and Company, 1993), p. 199.] Diagrams: (A and B) After H. Lodish et al., *Molecular Cell Biology*, 6th ed. (W. H. Freeman and Company, 2008), p. 3.]

1.4 Organelles 9

Figure 1.9 The bilayer structure of a

membrane. (A) Membranes are composed of two layers or sheets. (B) The hydrophobic parts of the layers interact with each other, and the hydrophilic parts interact with the environment. [Photograph courtesy of J. D. Robertson.]