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AAs human beings, we are adept learning machines. Long before a baby learns 
that she can change a sheet of paper by crumpling it, she is absorbing vast 

amounts of information. This learning continues throughout life in myriad ways: 
learning to ride a bike and to take social cues from friends; learning to drive a car 
and balance a checkbook; learning to solve a quadratic equation and to interpret 
a work of art.

Much of learning is necessary for survival, and even the simplest organisms 
learn to avoid danger and recognize food. However, human beings are especially 
gifted in that we also acquire skills and knowledge to make our lives richer and 
more meaningful. Many students would agree that reading novels and watching 
movies enhances the quality of our lives because we can expand our horizons 
by vicariously being in situations that we would never experience, reacting 
sympathetically or unsympathetically to characters who remind us of ourselves 
or are very different from anyone we have ever known.

Strangely, at least to us as science professors, science courses are rarely thought 
of as being enriching or insightful into the human condition. Larry Gould, a former 
president of Carleton College, was also a geologist and an arctic explorer. As a 
scientist, teacher, and administrator, he was very interested in science education 
especially as it related to other disciplines. In his inaugural address when he 
became president he said “Science is a part of the same whole as philosophy and 
the other fields of learning. They are not mutually exclusive disciplines but they 
are independent and overlapping.” Our goal was to write a book that encourages 
students to consider biochemistry in this broader sense, as a way to enrich their 
understanding of the world.

v
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Biochemistry in Context
All of biochemistry, esoteric as it may seem in isolation, can be understood 
in a context that is relevant to the student. We emphasize these connections 
throughout the book.

New to this Edition
This second edition takes into account recent discoveries and advances that have 
changed how we think about the fundamental concepts in biochemistry and 
human health. Particular attention has been paid to the following topics:
 

• The metabolic basis of cancer and the role of glycolysis in cancer 
(Chapters 16 and 18)

• The biochemical roles of glycoproteins (Chapter 10)

• Recombination in DNA repair (Chapter 35)

• Quantitative PCR (Chapter 41)

New sections are identified by NEW  in the detailed table of contents, starting 
on page xvii.

Experimental Techniques
In this new edition, our coverage of experimental techniques has been updated, 
expanded, and included in the printed textbook. Chapter 5, Techniques in 
Protein Biochemistry, and Chapter 41, Immunological and Recombinant DNA 
Techniques, explore important techniques used by biochemists in the past as well 
as new technologies with which biochemists make discoveries in present-day 
laboratories.

Metabolism in Context: Diet and Obesity
New information about the role of leptin in hunger and satiety has greatly 
influenced how we think about obesity and the growing epidemic of diabetes. 
In Metabolism in Context sections in this edition, we cover the integration of 
metabolism in regard to diet and obesity. By showing how the products of one 
pathway affect or are affected by others, we take students back to the big picture 
of biochemistry. Students see that the pathways that they are studying at the 
moment do not exist in isolation; rather, they work in concert with all of the 
other pathways that they have already studied. With examples of the relation 
between metabolic control and obesity, cancer, and exercise, the connection 
between life and biochemistry is made even more readily apparent. Metabolism 
of all biomolecules is tied together in:

•  Insulin Signaling Regulates Metabolism (Chapter 13)

• Cell Signaling Facilitates Caloric Homeostasis (Chapter 14)

• Precursors Formed by Muscle Are Used by Other Organs (Chapter 17)

• Glycogen Breakdown and Synthesis Are Reciprocally Regulated (Chapter 25)

• Fatty Acid Metabolism Is a Source of Insight into Various Physiological 
States (Chapter 27)

•  Ethanol Alters Energy Metabolism in the Liver (Chapter 28)

vi Preface
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Preface vii

 Clinical Insights
In the Clinical Insights, students see how the concepts 
most recently considered affect an aspect of a disease 
or its cure. By exploring biochemical concepts in 
the context of a disease, students learn how these 
concepts are relevant to human life and what happens 
when biochemistry goes awry. Some examples of the 
questions that we ask about human health throughout 
the book include:

• Why do some people get stomach aches from 
drinking milk? (p. 285)

• In what ways are cancer and exercise training 
biologically similar? (p. 292)

• What happens when nucleotide metabolism is 
disrupted? (p. 568)

• How do cataracts result from a defect in a 
simple biochemical pathway? (p. 286)

• How does aspirin work? (p. 201)

• How do certain kinds of cholesterol predict heart attacks? (p. 512)

• What happens when athletes take steroids? (p. 514)

• How can mistakes in the replication of DNA lead to cancer? (p. 619)

•	 How can inducing more mistakes actually treat cancer? 
(pp. 592 and 620)

 Biological Insights
Biochemistry affects every aspect of our world, sometimes 
in strange and amazing ways. Like Clinical Insights, 
Biological Insights bolster students’ understanding of 
biochemical concepts as they learn how simple changes 
in biochemical processes can have dramatic effects. We 
aim to enrich students’ understanding of their world by 
answering such questions as:
 

• How do snakes digest food before they eat it? 
 (p. 242)

• What happens when algae breathe too much? 
 (p. 362)

• Why does bread go stale? (p. 413)

• Why is it a bad idea to eat green potato chips? 
 (p. 395)

• How do weed killers work? (p. 403)

• What makes snakes such effective hunters? 
 (p. 206)

• How does a mutation in a mitochondrial protein alter pig behavior? (p. 378)

Lists of all Clinical and Biological Insights are included on page x as a quick 
reference for instructors.

40.3 Bacterial and Eukaryotic Initiation 697

5. Elongation and Termination. Eukaryotic elongation factors EF1a and EF1bg 
are the counterparts of bacterial EF-Tu and EF-Ts, whereas eukaryotic EF2 
corresponds to the EF-G (translocase) in bacteria. Termination in eukaryotes 
is carried out by a single release factor, eRF1, compared with two in bacteria. 
Finally, eIF-3, like its bacterial counterpart IF3, prevents the reassociation of 
ribosomal subunits in the absence of an initiation complex.

6. Organization. The components of the translation machinery in higher 
eukaryotes are organized into large complexes associated with the cytoskeleton. 
This association is believed to facilitate the efficiency of protein synthesis. 
Recall that the organization of elaborate biochemical processes into physical 
complexes is a recurring theme in biochemistry.

 Clinical Insight

Mutations in Initiation Factor 2 Cause a Curious Pathological Condition
Mutations in eukaryotic initiation factor 2 result in a mysterious disease, called 
 vanishing white matter (VWM) disease, in which nerve cells in the brain disap-
pear and are replaced by cerebrospinal fluid (Figure 40.13). The white matter of 
the brain consists predominately of nerve axons that connect the gray matter of 
the brain to the rest of the body. Death, resulting from fever or extended coma, is 
anywhere from a few years to decades after the onset of the disease. An especially 
puzzling aspect of the disease is its tissue specificity. A mutation in a biochemical 
process as fundamental to life as protein-synthesis initiation would be predicted 
to be lethal or to at least affect all tissues of the body. Diseases such as VWM 
graphically show that, although much progress has been made in biochemistry, 
much more research will be required to understand the complexities of health 
and disease. ■

elF-4E
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m7G 
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Figure 40.12 Protein interactions 
circularize eukaryotic mRNA. [After H. 
Lodish et al., Molecular Cell Biology, 6th ed. (W. 
H. Freeman and Company, 2008), Fig. 4.28.]

(A) (B)

Figure 40.13 The effects of vanishing 
white matter disease. (A) In the normal 
brain, magnetic resonance imaging (MRI) 
visualizes the white matter as dark gray. 
(B) In the diseased brain, MRI reveals that 
white matter is replaced by cerebrospinal 
fluid, seen as white. [Courtesy of Marjo S. van 
der Knaap, M.D., Ph.D., VU University Medical 
Center, The Netherlands.]
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22.3 Photosystems I and II 395

 Biological insight

Chlorophyll in Potatoes Suggests the Presence of a Toxin
Chlorophyll synthesis is a warning sign when it comes to identifying poisonous 
potatoes. Light activates a noxious pathway in potatoes that leads to the synthesis 
of solanine, a toxic alkaloid. Plant alkaloids include such molecules as nicotine, 
caffeine, morphine, cocaine, and codeine.
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Solanine is toxic to animals because it inhibits acetylcholinesterase, an enzyme 
crucial for controlling the transmission of nerve impulses. Plants are thought to syn-
thesize solanine to discourage insects from eating the potato. Light also causes pota-
toes to synthesize chlorophyll, which causes the tubers to turn green. Potatoes that 
are green have been exposed to light and are therefore probably also synthesizing 
solanine (Figure 22.9). For this reason, it is best not to eat green potatoes or potato 
chips with green edges. ■

22.3 Two Photosystems Generate a Proton 
Gradient and nADPH

With an understanding of the principles of how photosynthetic organisms generate 
high-energy electrons, let us examine the biochemical systems that coordinate the 
electron capture and their use to generate reducing power and ATP, resources that 
will be used to power the synthesis of glucose from CO2. Photosynthesis in green 
plants is mediated by two kinds of membrane-bound, light-sensitive  complexes—
photosystem I (PS I) and photosystem II (PS II), each with its own 
characteristic reaction center (Figure 22.10). Photosystem I re-
sponds to light with wavelengths shorter than 700 nm and is re-
sponsible for providing electrons to reduce NADP+ to NADPH, 
a versatile reagent for driving biosynthetic processes requiring 
reducing power. Photosystem II responds to wavelengths short-
er than 680 nm, sending electrons through a membrane-bound 
proton pump called cytochrome bf and then on to photosystem I 
to replace the electrons donated by PS I to NADP+. The electrons 
in the reaction center of photosystem II are replaced when two 
molecules of H2O are oxidized to generate a molecule of O2. As 
we will soon see, electrons flow from water through photosystem 
II, the cytochrome bf complex, and photosystem I and are finally 
accepted by NADP+. In the course of this flow, a proton gradi-
ent is established across the thylakoid membrane. This proton 
gradient is the driving force for ATP production.

Figure 22.9 Toxic potatoes. Potatoes that 
are exposed to light synthesize chlorophyll, 
resulting in greenish potatoes. Light also 
activates a pathway that results in the 
synthesis of solanine, a toxic alkaloid. 
Potato chips made from light-exposed 
potatoes have green edges. [Science Photo 
Library/Alamy.]

✓✓ 2 Identify the key products of the 
light reactions.

✓✓ 3 Explain how redox balance is 
maintained during the light reactions.

NADPHNADP+

O2H2O

e−

PS II

Cytochrome
bf

PS I

Light 
(λ < 680 nm)

Light 
(λ < 700 nm)

Plastocyanin

Figure 22.10 Two photosystems. The absorption of photons by 
two distinct photosystems (PS I and PS II) is required for complete 
electron flow from water to NADP+.
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viii Preface

Nutritional examples
Examples of the underlying relation between nutrition and biochemistry abound. 
Some examples in this edition answer questions such as:

• Why do we depend on Vitamin C? (p. 55)
• Are CoQ 10 supplements effective? (p. 360)
• How does bread crust become crisp? (p. 414)
• Why is Vitamin D an “honorary steroid?” (p. 513)

For a full list of the nutritional examples in this edition, see page xi.

Vitamin and coenzyme appendix
We have included a redesigned appendix of nine key vitamins including important 
information such as main food sources, diseases that are caused by deficiencies, 
the recommended daily allowance, and the book page on which each vitamin is 
discussed in detail. This table appears on pages A6–A15. 

teaching and Learning with this Book
In addition to providing an engaging contextual framework for the biochemistry 
throughout the book, we have created several opportunities for students to check 
their understanding, reinforce connections across the book, and practice what 
they have learned.

applied approach to Difficult topics
Working with feedback from instructors across North America, we have focused 
particular attention on topics that students find difficult, resulting in new sections 
such as:

• Making Buffers Is a Common Laboratory Practice (Chapter 2):  takes an 
 applied approach to helping students understand pH.
• There Are Six Major Classes of Enzymes (Chapter 6): helps students 
 recognize the capabilities of enzymes.

end-of-chapter Problems
Each chapter includes a robust set of practice problems. We have increased the 
number of end-of-chapter problems by 50% in the second edition.

• A new Challenge Problems section requires calculations plus an 
understanding of chemical structures and of concepts that are challenging 
for most students.

• Data Interpretation Problems train students to analyze data and reach 
scientific conclusions.

• Chapter Integration Problems draw connections between concepts 
across chapters.

Brief solutions to all of the end-of-chapter problems are provided in Answers 
to Problems at the back of the textbook. We are also pleased to offer expanded 
solutions in the new accompanying Student Companion, by Frank Deis, Nancy 
Counts Gerber, Richard Gumport, and Roger Koeppe. For more details on this 
supplement see page xiii.
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Preface ix
Learning objectives
Learning objectives are used in many 
different ways in the classroom. To help 
reinforce key concepts while the student 
is reading the chapter, we have identified 
these concepts  with a 3and number. 
These identifiers appear in the Section 
introductions as well as in the chapters 
in which the key concepts are presented. 
They are also tied to the end-of-chapter 
problems to assist students in developing 
problem-solving skills and instructors in 
assessing students’ understanding of some 
of the key concepts in each chapter.

Margin Features
We use the margin features in the textbook in several ways to help engage 
students, emphasize the relevance of biochemistry to their lives, and make it 
more accessible.

• Quick Quizzes allow students to check their understanding of the 
material as they read it so that they can immediately gauge whether they 
need to review a topic or advance to the next one. Answers to the Quick 
Quizzes can be found at the end of each chapter.

• Margin Structures enable students to understand the topic at hand 
without needing to look up a basic structure or functional group that 
they may have seen earlier in the book or in another course.

• Margin Facts  are short asides 
to the biochemical topic under 
consideration that relate the 
topic to everyday life or provide 
glimpses of how scientists 
think about science.

• Vitamins and Coenzymes are 
featured in the margin next 
to their inclusion as part of 
an enzyme mechanism or 
metabolic pathway. Through 
these margin features, students 
will learn how we obtain 
vitamins from our diets and 
what happens if we do not 
have enough of them. These 
important molecules and their 
structures can be found in 
Appendix D to help students 
easily find where each vitamin 
is discussed in the book. 

46 4 Protein Three-Dimensional Structure

In this chapter, we will examine the properties of the various levels of protein 
structure. Then, we will investigate how primary structure determines the final 
three-dimensional structure.

4.1 Primary Structure: Amino Acids Are Linked by Peptide 
Bonds to Form Polypeptide Chains

Proteins are complicated three-dimensional molecules, but their three-dimensional 
structure depends simply on their primary structure—the linear polymers formed by 
linking the a@carboxyl group of one amino acid to the a-amino group of another 
amino acid. The linkage joining amino acids in a protein is called a peptide bond 
(also called an amide bond). The formation of a dipeptide from two amino acids is 
accompanied by the loss of a water molecule (Figure 4.1). The equilibrium of this 
reaction lies on the side of hydrolysis rather than synthesis under most conditions. 
Hence, the biosynthesis of peptide bonds requires an input of free energy. None-
theless, peptide bonds are quite stable kinetically because the rate of hydrolysis is 
extremely slow; the lifetime of a peptide bond in aqueous solution in the absence of 
a catalyst approaches 1000 years.

✓✓ 2 Compare and contrast the 
different levels of protein structure and 
how they relate to one another.

A series of amino acids joined by peptide bonds form a polypeptide chain, 
and each amino acid unit in a polypeptide is called a residue. A polypeptide chain 
has directionality because its ends are different: an a-amino group is at one end, 
and an a-carboxyl group is at the other. By convention, the amino end is taken to 
be the beginning of a polypeptide chain, and so the sequence of amino acids in a 
polypeptide chain is written starting with the amino-terminal residue. Thus, in 
the pentapeptide Tyr-Gly-Gly-Phe-Leu (YGGFL), tyrosine is the amino-terminal 
(N-terminal) residue and leucine is the carboxyl-terminal (C-terminal) residue 
(Figure 4.2). The reverse sequence, Leu-Phe-Gly-Gly-Tyr (LFGGY), is a different 
pentapeptide, with different chemical properties. Note that the two peptides in 
question have the same amino acid composition but differ in primary structure.

–
+ H2O
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C

O

O

R1H
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C

O

O
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C
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C
C

O

O

H

R2H

+
–

–

Figure 4.1 Peptide-bond formation. The 
linking of two amino acids is accompanied 
by the loss of a molecule of water.

LeuPheGlyGlyTyr
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Figure 4.2 Amino acid sequences have 
direction. This illustration of the 
pentapeptide Tyr-Gly-Gly-Phe-Leu (YGGFL) 
shows the sequence from the amino 
terminus to the carboxyl terminus. This 
pentapeptide, Leu-enkephalin, is an opioid 
peptide that modulates the perception of 
pain.
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182 11 Lipids

bond introduces a kink in the fatty acid and makes tight packing between the 
chains impossible. The lack of tight packing limits the van der Waals interactions 
between chains, lowering the melting temperature.

? QUICK QUIZ 1 What factors 
determine the melting point of fatty 

acids?

Chain length also affects the melting point, as illustrated by the fact that the 
melting temperature of palmitic acid (C16) is 6.5 degrees lower than that of stea-
ric acid (C18). Thus, short chain length and cis unsaturation enhance the fluidity of 
fatty acids and of their derivatives. The fat that accumulates in the pan as bacon is 
fried is composed primarily of saturated fatty acids and solidifies soon after the 
burner is turned off. Olive oil, on the other hand, is composed of high concen-
trations of oleic acid and some polyunsaturated fatty acids and remains liquid 
at room temperature. The variability of melting points is not merely an arcane 
chemical insight. Melting temperatures of fatty acids are key elements in the con-
trol of the fluidity of cell membranes, and the proper degree of fluidity is essential 
for membrane function (Chapter 12).

The Degree and Type of Unsaturation Are Important to health
Although fats are crucial biochemicals, too much saturated and trans-unsaturated 
fats in the diet are correlated with high blood levels of cholesterol and cardio-
vascular disease. The biochemical basis for this correlation remains to be deter-
mined, although trans-unsaturated fats appear to trigger inflammatory pathways 
in immune cells. In contrast, certain cis-polyunsaturated fatty acids are essen-
tial in our diets because we cannot synthesize them. Such fatty acids include the 
v-3 fatty acids—polyunsaturated fatty acids common in cold-water fish such as 
salmon, which have been suggested to play a role in protection from cardiovascu-
lar disease. The important v-3 fatty acids are a-linolenate, found in vegetable oils, 
eicosapentaenoate (EPA, eicosapentaenoic acid) and docosahexaenoate (DHA, 
docosahexaenoic acid), both of which are found in fatty fish and shellfish.
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•	 Specific Activity. This parameter, obtained by dividing total activity by total 
protein, enables us to measure the degree of purification by comparing specific 
activities after each purification step. Recall that the goal of a purification 
scheme is to maximize specific activity.

•	 Yield. This parameter is a measure of the total activity retained after each 
purification step as a percentage of the activity in the crude extract. The 
amount of activity in the initial extract is taken to be 100%.

•	 Purification Level. This parameter is a measure of the increase in purity and is 
obtained by dividing the specific activity, calculated after each purification 
step, by the specific activity of the initial extract.

As we see in Table 5.1, several purification steps can lead to several thousand-
fold purification. Inevitably, in each purification step, some of the protein of inter-
est is lost, and so our overall yield is 35%. A good purification scheme takes into 
account purification levels as well as yield.

The SDS-PAGE depicted in  Figure 5.13 shows that, if we load the same 
amount of protein onto each lane after each step, the number of bands decreases 
in proportion to the level of purification and the amount of protein of interest 
increases as a proportion of the total protein present.

5.3 Immunological Techniques Are Used to Purify 
and Characterize Proteins

For enzymes, the assay is a measure of enzyme activity—the disappearance of 
substrate or the appearance of product. Let us examine the purification of an-
other type of protein, the estrogen receptor. In so doing, we will learn several 
more biochemical characterization techniques and we will see the power of im-
munological techniques.

The estrogen-receptor protein binds the female steroid hormone estradiol, 
an estrogen, and then regulates the expression of genes that play a role in the 
development of the female phenotype. But the estrogen receptor has no enzyme 
activity: How can we test for its presence? We can approach this question by ask-
ing another one: What is the most-distinctive property of the estrogen receptor? 
The estrogen receptor is the only protein in estrogen-responsive tissues that can 
bind to the estradiol, with high affinity. We can exploit this distinctive property 
by exposing a mixture containing the receptor to radiolabeled estradiol. Because 
the estrogen receptor has such a high affinity for estradiol, it will be the only 
protein in the cell that binds to this radioactive steroid. How do we know that 
the receptor has bound to this steroid? To answer this question requires a second 
part of our assay—a means to detect the estradiol–receptor complex. A technique 
called zonal, density gradient, or, more commonly, gradient centrifugation pro-
vides a convenient means of detection.

Centrifugation Is a Means of Separating Proteins
Earlier, we examined the technique of differential centrifugation, which is used 
to fractionate the cell into several components consisting of different organ-
elles. Here, we examine ultracentrifugation, which is capable of separating much 
smaller molecular complexes. Proteins or protein complexes will move in a liquid 
medium when subjected to a centrifugal force. The rate at which these complexes 
or particles move when subjected to such a force is determined by three key char-
acteristics: mass, density, and shape. A convenient means of quantifying the rate 
of movement is to calculate the sedimentation coefficient, s, of a particle by using 
the following equation:

s = m(1 - vr)>f

✓✓ 5 Explain how immunological 
techniques can be used to purify and 
identify proteins.

CH3
OH

HO
Estradiol

? QUICk QUIz 2 What physical 
differences among proteins allow  

for their purification?

76 5 Techniques in Protein Biochemistry
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4.3 Tertiary Structure 55

 Clinical Insight

Defects in Collagen Structure Result in Pathological Conditions
The importance of the positioning of glycine inside the triple helix is illustrated 
in the disorder osteogenesis imperfecta, also known as brittle bone disease. In this 
condition, which can vary from mild to very severe, other amino acids replace the 
internal glycine residue. This replacement leads to a delayed and improper fold-
ing of collagen, and the accumulation of defective collagen results in cell death. 
The most-serious symptom is severe bone fragility. Defective collagen in the eyes 
causes the whites of the eyes to have a blue tint (blue sclera).

As we have seen, proline residues are important in creating the coiled-coil 
structure of collagen. Hydroxyproline is a modified version of proline, with a 
hydroxyl group replacing a hydrogen atom in the pyrrolidine ring. It is a com-
mon element of collagen, appearing in the glycine-proline-proline sequence as 
the second proline. Hydroxyproline is essential for stabilizing collagen, and its 
formation illustrates our dependence on vitamin C.

Vitamin C is required for the formation of stable collagen fibers because it 
assists in the formation of hydroxyproline from proline. Less-stable collagen re-
sults in scurvy. The symptoms of scurvy include skin lesions and blood-vessel 
fragility. Most notable are bleeding gums, the loss of teeth, and periodontal infec-
tions. Gums are especially sensitive to a lack of vitamin C because the collagen in 
gums turns over rapidly. Vitamin C is required for the continued activity of prolyl 
hydroxylase, which synthesizes hydroxyproline. This reaction requires an Fe2+  
ion to activate O2. This iron ion, embedded in prolyl hydroxylase, is susceptible to 
oxidation, which inactivates the enzyme. How is the enzyme made active again? 
Ascorbate (vitamin C) comes to the rescue by reducing the Fe3+  of the inactivated 
enzyme. Thus, ascorbate serves here as a specific antioxidant. n

4.3 Tertiary Structure: Water-Soluble Proteins Fold 
into Compact Structures

As already discussed, primary structure is the sequence of amino acids, and sec-
ondary structure is the simple repeating structures formed by hydrogen bonds 
between hydrogen and oxygen atoms of the peptide backbone. Another level of 
structure, tertiary structure, refers to the spatial arrangement of amino acid resi-
dues that are far apart in the sequence and to the pattern of disulfide bonds. This 
level of structure is the result of interactions between the R groups of the peptide 
chain. To explore the principles of tertiary structure, we will examine myoglobin, 
the first protein to be seen in atomic detail.

Myoglobin Illustrates the Principles of Tertiary Structure
Myoglobin is an example of a globular protein (Figure 4.25). In contrast with fi-
brous proteins such as keratin, globular proteins have a compact three-dimensional 
structure and are water soluble. Globular proteins, with their more-intricate three-
dimensional structure, perform most of the chemical transactions in the cell.

Myoglobin, a single polypeptide chain of 153 amino acids, is an oxygen-
binding protein found predominantly in heart and skeletal muscle; it appears 
to facilitate the diffusion of oxygen from the blood to the mitochondria, the pri-
mary site of oxygen utilization in the cell. The capacity of myoglobin to bind 
oxygen depends on the presence of heme, a prosthetic (helper) group containing 
an iron atom. Myoglobin is an extremely compact molecule. Its overall dimensions 
are 45 * 35 * 25 Å, an order of magnitude less than if it were fully stretched 
out. About 70% of the main chain is folded into eight a helices, and much of the 
rest of the chain forms turns and loops between helices.

Vitamin C
Human beings are among the few 
mammals unable to synthesize vitamin C. 
Citrus products are the most common 
source of this vitamin. Vitamin C 
functions as a general antioxidant to 
reduce the presence of reactive oxygen 
species throughout the body. In 
addition, it serves as a specific 
antioxidant by maintaining metals, 
required by certain enzymes such as 
the enzyme that synthesizes 
hydroxyproline, in the reduced state. 
[Photograph from Don Farrell/Digital 
Vision/Getty Images.]
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Media and Supplements
A full package of media resources and supplements provides instructors and students 
with innovative tools to support a variety of teaching and learning approaches. All 
these resources are fully integrated with the style and goals of the textbook.

eBook
http://ebooks.bfwpub.com/tymoczko2e
This online version of the textbook combines the contents of the printed book, 
electronic study tools, and a full complement of student media specifically created 
to support the textbook. Problems and resources from the printed textbook are 
incorporated throughout the eBook to ensure that students can easily review 
specific concepts. The eBook enables students to:

• Access the complete book and its electronic study tools from any 
Internet-connected computer by using a standard Web browser;

• Navigate quickly to any section or subsection of the book or any page 
number of the printed book;

• Add their own bookmarks, notes, and highlighting;
• Access all the fully integrated media resources associated with the book;
• Review quizzes and personal notes to help prepare for exams; and
• Search the entire eBook instantly, including the index and glossary.

Instructors teaching from the eBook can assign either the entire textbook or a 
custom version that includes only the chapters that correspond to their syllabi. They 
can choose to add notes to any page of the eBook and share these notes with their 
students. These notes may include text, Web links, animations, or photographs.

BiochemPortal
http://courses.bfwpub.com/tymockzo2e
BiochemPortal is a dynamic, fully integrated learning environment that brings 
together all of our teaching and learning resources in one place. This learning 
system also includes easy-to-use, powerful assessment tracking and grading 
tools that enable instructors to assign problems for practice, as homework, 
quizzes, or tests. A personalized calendar, an announcement center, and 
communication tools help instructors to manage their courses. In addition to 
all the resources found on the companion Web site, BiochemPortal includes the 
following resources:

• The Interactive eBook integrates the complete text with all relevant 
media resources.

• Learning Curve is a new quizzing engine that adapts to learning needs 
and tells students just what to study.

• The Metabolic Map helps students understand the principles and 
applications of the core metabolic pathways. Students can work through 
guided tutorials with embedded assessment questions or they can explore 
the Metabolic Map on their own by using the dragging and zooming 
function of the map.
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companion Web site at www.whfreeman.com/tymoczko2e

For students 
• Problem-solving videos, created by Scott Ensign of Utah State University, 

provide 24/7 online problem-solving help to students. Through a two-part 
approach, each 10-minute video covers a key textbook problem on a topic 
that students traditionally struggle to master. Dr. Ensign first describes 
a problem-solving strategy and then applies the strategy to the problem 
at hand in clear, concise steps. Students can easily pause, rewind, and 
review any of the steps until they firmly grasp not just the solution but 
also the reasoning behind it. Working through the problems in this way 
is designed to make students better and more confident at applying key 
strategies as they solve other textbook and exam problems.. 

• Living Figures enable students to view every textbook illustration 
of a protein structure online in interactive 3-D using Jmol. Students 

can zoom and rotate 56 “live” structures to get a better understanding of 
their three-dimensional nature and can experiment with different display 
styles (space-filling, ball-and-stick, ribbon, or backbone) by means of a 
user-friendly interface.

• Self-assessment tool enables students to test their understanding by 
taking an online multiple-choice quiz for each chapter, as well as a 
multiple-choice quiz as a general chemistry review.

• Web links connect students with the world of biochemistry beyond the 
classroom.

For Instructors
All of the features listed for students plus:

• Optimized JPEGs of all illustrations, photographs, and tables in the 
textbook, including structures of common compounds, ensure maximum 
clarity and visibility in lecture halls and on computer screens. The JPEGs 
are also offered in separate PowerPoint files. 

• Test Bank, by Harvey Nikkel of Grand Valley State University, Susan 
Knock of Texas A&M University at Galveston, and Joseph Provost of 
Minnesota State University at Moorhead, offers more than 1500 questions 
in editable Word format.

• Clicker Questions include more than 100 questions for classroom use 
that will work seamlessly with any personal response system.

Instructor’s resource DVD 
(1-4641-0976-1)
The DVD includes all instructor resources that are on the Web site.

student companion
By Frank Deis, Rutgers University; Nancy Counts Gerber, San Francisco State 
University; Richard I. Gumport, College of Medicine at Urbana-Champaign, 
University of Illinois; and Roger E. Koeppe, II, University of Arkansas at Fayetteville.
(1-4641-0934-6)
For each chapter of the textbook, the Student Companion includes:

• Chapter Learning Objectives and Summary
• Self-Assessment Problems, including multiple-choice, short-answer, 

matching questions, and challenge problems, and their answers
• Expanded Solutions to the end-of-chapter problems in the textbook
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The ultimate goal of all scientific endeavors is to develop a deeper, richer 
understanding of ourselves and the world in which we live. Biochemistry 

has had and will continue to have an extensive role in helping us to develop 
this understanding. Biochemistry, the study of living organisms at the molecular 
level, has shown us many of the details of the most fundamental processes of 
life. For instance, biochemistry has shown us how information flows from genes 
to molecules that have functional capabilities. In recent years, biochemistry has 
also unraveled some of the mysteries of the molecular generators that provide 
the energy that power living organisms. The realization that we can understand 
such essential life processes has significant philosophical implications. What 
does it mean, biochemically, to be human? What are the biochemical differences 
between a human being, a chimpanzee, a mouse, and a fruit fly? Are we more 
similar than we are different?

The understanding achieved through biochemistry is greatly influencing 
medicine and other fields. Although we may not be accustomed to thinking of 
illness in relation to molecules, illness is ultimately some sort of malfunction 
at the molecular level. The molecular lesions causing sickle-cell anemia, cystic 
fibrosis, hemophilia, and many other genetic diseases have been elucidated at the 
biochemical level. Biochemistry is also contributing richly to clinical diagnostics. 
For example, elevated levels of telltale enzymes in the blood reveal whether 
a patient has recently had a myocardial infarction (heart attack). Agriculture, 
too, is employing biochemistry to develop more effective, environmentally safer 

Biochemistry Helps Us 
Understand Our World

Chapter 1: 
Biochemistry and 
the Unity of Life

Chapter 2: Water, 
Weak Bonds, and the 
Generation of Order 
Out of Chaos

1
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herbicides and pesticides and to created genetically engineered plants that are, 
for example, more resistant to insects.

In this section, we will learn some of the key concepts that structure the study 
of biochemistry. We begin with an introduction to the molecules of biochemistry, 
followed by an overview of the fundamental unit of biochemistry and life itself—
the cell. Finally, we examine the weak reversible bonds that enable the formation 
of biological structures and permit the interplay between molecules that makes 
life possible.

✓✓ By the end of this section, you should be able to:

✓✓ 1 Describe the key classes of biomolecules and differentiate between them.

✓✓ 2 List the steps of the central dogma.

✓✓  3  Identify the key features that differentiate eukaryotic cells from 
prokaryotic cells.

✓✓  4  Describe the chemical properties of water and explain how water affects 
biochemical interactions.

✓✓  5  Describe the types of noncovalent, reversible interactions and explain why 
reversible interactions are important in biochemistry.

✓✓ 6  Define pH and explain why changes in pH may affect biochemical 
systems. 

2
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A key goal of biochemistry, one that has been met with striking success, is to 
understand what it means to be alive at the molecular level. Another goal is 

to extend this understanding to the organismic level—that is, to understand the 
effects of molecular manipulations on the life that an organism leads. For in-
stance, understanding how the hormone insulin works at the molecular level il-
luminates how the organism controls the levels of fuels in its blood. Often, such 
understanding facilitates an understanding of disease states, such as diabetes, 
which results when insulin signaling goes awry. In turn, this knowledge can be a 
source of insight into how the disease can be treated.

Biochemistry has been an active area of investigation for more than a 
century. Much knowledge has been gained about how a variety of organisms 
manipulate energy and information. However, one of the most exciting outcomes 
of biochemical research has been the realization that all organisms have much 
in common biochemically. Organisms are remarkably uniform at the molecular 
level. This observation is frequently referred to as the unity of biochemistry, 
but, in reality, it illustrates the unity of life. French biochemist Jacques Monod 
encapsulated this idea in 1954 with the phrase “Anything found to be true of 
[the bacterium] E. coli must also be true of elephants.” This uniformity reveals 
that all organisms on Earth have arisen from a common ancestor. A core of 
essential biochemical processes, common to all organisms, appeared early in the 

3

Biochemistry  
and the Unity of Life

Despite their vast differences in mass—the African elephant has a mass 3 * 1018 times as 
great as that of the bacterium E. coli—and complexity, the biochemical workings of these 
two organisms are remarkably similar. [E. coli: Eye of Science/Photo Researchers. Elephant: 
Imagebroker/Alamy.]

1.1  Living Systems Require a Limited 
Variety of Atoms and Molecules

1.2  there Are Four Major Classes of 
Biomolecules

1.3  the Central Dogma Describes the 
Basic Principles of Biological 
information transfer

1.4  Membranes Define the Cell and 
Carry Out Cellular Functions

C H A P t e R  1
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4 1 Biochemistry and the Unity of Life

evolution of life. The diversity of life in the modern world has been generated by 
evolutionary processes acting on these core processes through millions or even 
billions of years.

We begin our study of biochemistry by looking at commonalities. We will 
examine the molecules and molecular constituents that are used by all life forms 
and will then consider the rules that govern how biochemical information is 
accessed and how it is passed from one generation to the next. Finally, we will take 
an overview of the fundamental unit of life—the cell. This is just the beginning. 
All of the molecules and structures that we see in this chapter we will meet again 
and again as we explore the chemical basis of life.

1.1 Living Systems Require a Limited Variety of Atoms 
and Molecules

Ninety naturally occurring elements have been identified, yet only three—
oxygen, hydrogen, and carbon—make up 98% of the atoms in an organism. 
Moreover, the abundance of these three elements in life is vastly different from 
their abundance in Earth’s crust (Table 1.1). What can account for the dispar-
ity between what is available and what organisms are made of?

One reason that oxygen and hydrogen are so common is the ubiquity of wa-
ter, or “the matrix of life,” as biochemist Albert Szent-Györgi called it. This tiny 
molecule—consisting of only three atoms—makes life on Earth possible. Indeed, 
current belief is that all life requires water, which is why so much effort has been 
made in recent decades to determine whether Mars had water in the past and 
whether it still does. The importance of water for life is so crucial that its presence 
is tantamount to saying that life could be present. We will consider the properties 
of water and how these properties facilitate biochemistry in Chapter 2.

After oxygen and hydrogen, the next most-common element in living organ-
isms is carbon. Most large molecules in living systems are made up predominantly 
of carbon. Fuel molecules are made entirely of carbon, hydrogen, and oxygen. 

table 1.1 Chemical compositions as percentage of total number of atoms

 Composition in

 Element Human beings (%) Seawater (%)  Earth’s crust (%) 

Hydrogen 63 66 0.22

Oxygen 25.5 33 47

Carbon 9.5 0.0014 0.19

Nitrogen 1.4 60.1 60.1

Calcium 0.31 0.006 3.5

Phosphorus 0.22 60.1 60.1

Chloride 0.03 0.33 60.1

Potassium 0.06 0.006 2.5

Sulfur 0.05 0.017 60.1

Sodium 0.03 0.28 2.5

Magnesium 0.01 0.003 2.2

Silicon 60.1 60.1 28

Aluminum 60.1 60.1 7.9

Iron 60.1 60.1 4.5

Titanium 60.1 60.1 0.46

All others 60.1 60.1 60.1

Note: Because of rounding, total percentages do not equal 100%.
Source: After E. Frieden, The chemical elements of life, Sci. Am. 227(1), 1972, p. 54.
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1.2 Biomolecules 5
Biological fuels, like the fuels that power machinery, react with oxygen to pro-
duce carbon dioxide and water. In regard to biological fuels, this reaction, called 
combustion, provides the energy to power the cell. As a means of seeing why 
carbon is uniquely suited for life, let us compare it with silicon, its nearest el-
emental relative. Silicon is much more plentiful than carbon in Earth’s crust 
(see Table 1.1), and, like carbon, can form four covalent bonds—a property cru-
cial to the construction of large molecules. However, carbon-to-carbon bonds 
are stronger than silicon-to-silicon bonds. This difference in bond strength has 
two important consequences. First, large molecules can be built with the use of 
carbon–carbon bonds as the backbone because of the stability of these bonds. 
Second, more energy is released when carbon–carbon bonds undergo combus-
tion than when silicon reacts with oxygen. Thus, carbon-based molecules are 
stronger construction materials and are better fuels than silicon-based mole-
cules. Carbon even has an advantage over silicon after it has undergone com-
bustion. Carbon dioxide is readily soluble in water and can exist as a gas; thus, 
it remains in biochemical circulation, given off by one tissue or organism to be 
used by another tissue or organism. In contrast, silicon is essentially insoluble 
in reactions with oxygen. After it has combined with oxygen, it is permanently 
out of circulation.

Other elements have essential roles in living systems—notably, nitrogen, 
phosphorus, and sulfur. Moreover, some of the trace elements, although present 
in tiny amounts compared with oxygen, hydrogen, and carbon, are absolutely 
vital to a number of life processes. We will see specific uses of these elements as 
we proceed with our study of biochemistry.

1.2 there Are Four Major Classes of Biomolecules
Living systems contain a dizzying array of biomolecules. However, these biomol-
ecules can be divided into just four classes: proteins, nucleic acids, lipids, and 
carbohydrates.

Proteins Are Highly Versatile Biomolecules
Much of our study of biochemistry will revolve around proteins. Proteins are con-
structed from 20 building blocks, called amino acids, linked by peptide bonds to 
form long unbranched polymers (Figure 1.1). These polymers fold into precise 
three-dimensional structures that facilitate a vast array of biochemical functions. 
Proteins serve as signal molecules (e.g., the hormone insulin signals that fuel is 
in the blood) and as receptors for signal molecules. Receptors convey to the cell 
that a signal has been received and initiates the cellular response. Thus, for ex-
ample, insulin binds to its particular receptor, called the insulin receptor, and 
initiates the biological response to the presence of fuel in the blood. Proteins also 
play structural roles, allow mobility, and provide defenses against environmental 

✓✓ 1 Describe the key classes of 
biomolecules and differentiate between 
them.

1 2 3

Amino acid sequence ProteinAmino acids

Figure 1.1 Protein folding. The three-dimensional structure of a protein is dictated by the 
sequence of amino acids that constitute the protein.
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6 1 Biochemistry and the Unity of Life

dangers. Perhaps the most prominent role of proteins is that 
of catalysts—agents that enhance the rate of a chemical reac-
tion without being permanently affected themselves. Protein 
catalysts are called enzymes. Every process that takes place in 
living systems depends on enzymes.

nucleic Acids Are the information Molecules of the Cell
As information keepers of the cell, the primary function of 
nucleic acids is to store and transfer information. They contain 
the instructions for all cellular functions and interactions. Like 

proteins, nucleic acids are linear molecules. However, nucleic acids are constructed 
from only four building blocks called nucleotides. A nucleotide is made up of a 
five-carbon sugar, either a deoxyribose or a ribose, attached to a heterocyclic ring 
structure called a base and at least one phosphoryl group (Figure 1.2).

There are two types of nucleic acid: deoxyribonucleic acid (DNA) and ribo-
nucleic acid (RNA). Genetic information is stored in DNA—the “parts list” that 
determines the nature of an organism. DNA is constructed from four deoxy-
ribonucleotides, differing from one another only in the ring structure of the 
bases—adenine (A), cytosine (C), guanine (G), and thymine (T). The informa-
tion content of DNA is the sequence of nucleotides linked together by phos-
phodiester linkages. DNA in all higher organisms exists as a double-stranded 
helix (Figure 1.3). In the double helix, the bases interact with one another—
A with T and C with G.

Adenosine triphosphate
(ATP)
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Figure 1.2 The structure of a nucleotide. 
A nucleotide (in this case, adenosine 
triphosphate) consists of a base (shown in 
blue), a five-carbon sugar (black), and at 
least one phosphoryl group (red).

Figure 1.3 The double helix. Two 
individual chains of DNA interact to form 
a double helix. The sugar–phosphate 
backbone of one of the two chains is 
shown in red; the other is shown in blue. 
The bases are shown in green, purple, 
orange, and yellow.

RNA is a single-stranded form of nucleic acid. Some regions of DNA are 
copied as a special class of RNA molecules called messenger RNA (mRNA). 
Messenger RNA is a template for the synthesis of proteins. Unlike DNA, 
mRNA is frequently broken down after use. RNA is similar to DNA in compo-
sition with two exceptions: the base thymine (T) is replaced by the base uracil 
(U), and the sugar component of the ribonucleotides contains an additional 
hydroxyl (iOH) group.

Lipids Are a Storage Form of Fuel and Serve As a Barrier
Among the key biomolecules, lipids are much smaller than proteins or nucleic 
acids. Whereas proteins and nucleic acids can have molecular weights of thou-
sands to millions, a typical lipid has a molecular weight of 1300. Moreover, lipids 
are not polymers made of repeating units, as are proteins and nucleic acids. A 
key characteristic of many biochemically important lipids is their dual chemical 
nature: part of the molecule is hydrophilic, meaning that it can dissolve in water, 
whereas the other part, made up of one or more hydrocarbon chains, is hydro-
phobic and cannot dissolve in water (Figure 1.4). This dual nature allows lipids to 
form barriers that delineate the cell and the cellular compartments. Lipids allow 
the development of “inside” and “outside” at a biochemical level. The hydrocar-
bon chains cannot interact with water and, instead, interact with those of other 
lipids to form a barrier, or membrane, whereas the water-soluble components 
interact with the aqueous environment on either side of the membrane. Lipids 
are also an important storage form of energy. As we will see, the hydrophobic 
component of lipids can undergo combustion to provide large amounts of cel-
lular energy. Lipids are crucial signal molecules as well.
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1.3 The Central Dogma 7

Carbohydrates Are Fuels and informational Molecules
Most of us already know that carbohydrates are an important fuel source for most 
living creatures. The most-common carbohydrate fuel is the simple sugar glu-
cose. Glucose is stored in animals as glycogen, which consists of many glucose 
molecules linked end to end and having occasional branches (Figure 1.5). In 
plants, the storage form of glucose is starch, which is similar to glycogen in mo-
lecular composition.

There are thousands of different carbohydrates. They can be linked together 
in chains, and these chains can be highly branched, much more so than in glyco-
gen or starch. Such chains of carbohydrates play important roles in helping cells 
to recognize one another. Many of the components of the cell exterior are deco-
rated with various carbohydrates that can be recognized by other cells and serve 
as sites of cell-to-cell interactions.

✓✓ 2 List the steps of the central 
dogma.

G Figure 1.5 The structure of glycogen. 
Glycogen is a branched polymer composed 
of glucose molecules. The protein 
identified by the letter G at the center of 
the glycogen molecule is required for 
glycogen synthesis (Chapter 25).

? QUiCk QUiz 1 Name the four 
classes of biomolecules and state an 

important function of each class.

O OH

H

CH2OH

H
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H

H

HO

H

Glucose

Figure 1.4 The dual properties of lipids. (A) One part of a lipid molecule is hydrophilic; the 
other part is hydrophobic. (B) In water, lipids can form a bilayer, constituting a barrier that 
separates two aqueous compartments.

Hydrophobic tail
Hydrophilic head

Space-filling model Shorthand depiction

(A) (B)

1.3 the Central Dogma Describes the Basic Principles 
of Biological information transfer

Information processing in all cells is quite complex. It increases in complexity as 
cells become part of tissues and as tissues become components of organisms. The 
scheme that underlies information processing at the level of gene expression was 
first proposed by Francis Crick in 1958.

DNA  

 
 

  
 

  999999: 
  RNA  

 
 

  
 

  999999: 
  Protein

Replication

Transcription Translation

Crick called this scheme the central dogma: information flows from DNA to RNA 
and then to protein. Moreover, DNA can be replicated. The basic tenants of this 
dogma are true, but, as we will see later, this scheme is not as simple as depicted.
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8 1 Biochemistry and the Unity of Life

DNA constitutes the heritable information—the genome. This information is 
packaged into discrete units called genes. It is this collection of genes that deter-
mines the physical nature of the organism. When a cell duplicates, DNA is copied 
and identical genomes are then present in the newly formed daughter cells. The 
process of copying the genome is called replication. A group of enzymes, collec-
tively called DNA polymerase, catalyze the replication process (Figure 1.6).

Genes are useless in and of themselves. The information must be rendered 
accessible. This accessibility is achieved in the process of transcription through 
which one form of nucleic acid, DNA, is transcribed into another form, RNA. 
The enzyme RNA polymerase catalyzes this process (Figure 1.7). Which genes 
are transcribed, as well as when and where they are transcribed, is crucial to the 
fate of the cell. For instance, although each cell in a human body has the DNA 
information that encodes the instructions to make all tissues, this information is 
parceled out. The genes expressed in the liver are different from those expressed 
in the muscles and brain. Indeed, it is this selective expression that defines the func-
tion of a cell or tissue.

A key aspect of the selective expression of genetic information is the tran-
scription of genes into mRNA. The information encoded in mRNA is realized 
in the process of translation because information is literally translated from one 
chemical form (nucleic acid) into another (protein). Proteins have been described 
as the workhorses of the cell, and translation renders the genetic information into 
a functional form. Translation takes place on large macromolecular complexes 
called ribosomes, consisting of RNA and protein (Figure 1.8).

Now that you have been introduced to the key biomolecules and have brief-
ly examined the central dogma of information transfer, let us look at the plat-
form—the cell—that contains and coordinates the biochemistry required for life.

C
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T

A

T

A

A

T

C

C

G

C
A

T
GC

G
G
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G
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A

CG

Newly
synthesized
strands

DNA polymerase

Figure 1.6 DNA replication. When the 
two strands of a DNA molecule are 
separated, each strand can serve as a 
template for the synthesis of a new partner 
strand. DNA polymerase catalyzes 
replication. 

RNA–DNA hybrid
helix

RNA polymerase

Nascent
RNA

Movement
of polymerase

Figure 1.7 The transcription of RNA. Transcription, catalyzed 
by RNA polymerase, makes an RNA copy of one of the strands 
of DNA.

AA4

AA3

AA2

AA1

mRNA

New polypeptide chain

Ribosome

Figure 1.8 Translation takes place on ribosomes. 
A ribosome decodes the information in mRNA and 
translates it into the amino acid sequence of a protein. 

As defined in the Oxford English 
Dictionary, to transcribe means to 
make a copy of (something) in writing; 
to copy out from an original; to write 
(a copy).

✓✓ 3 Identify the key features that 
differentiate eukaryotic cells from 
prokaryotic cells.

1.4 Membranes Define the Cell and Carry Out 
Cellular Functions

The cell is the basic unit of life. Cells can grow, replicate, and interact with their 
environment. Living organisms can be as simple as a single cell or as complex as 
a human body, which is composed of approximately 100 trillion cells. Every cell 
is delineated by a membrane that separates the inside of the cell from its environ-
ment. A membrane is a lipid bilayer: two layers of lipids organized with their hy-
drophobic chains interacting with one another and the hydrophilic head groups 
interacting with the environment (Figure 1.9).
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1.4 Organelles 9
Membrane bilayer

Exterior

(A) (B)

Hydrophilic head

Hydrophilic head

Hydrophobic
tails

Cytoplasm

Figure 1.9 The bilayer structure of a 
membrane. (A) Membranes are composed 
of two layers or sheets. (B) The 
hydrophobic parts of the layers interact 
with each other, and the hydrophilic parts 
interact with the environment. [Photograph 
courtesy of J. D. Robertson.]

(A)  Prokaryotic cell (B)  Eukaryotic cell

Nucleus

Plasma membrane

Golgi complex

Lysosome

Secretory vesicle

Mitochondrion

Periplasmic space
and cell wall

Outer membrane Inner (plasma)
membrane

Nucleoid
0.5 �m

1 �m

Nucleus

Golgi complex

Lysosome

Mitochondrion

Endoplasmic reticulum

Rough
endoplasmic
reticulum

Inner (plasma) membrane

Cell wall

Periplasmic space

Outer membrane

Chromosome
(located in the nucleoid)

Figure 1.10 Prokaryotic and eukaryotic cells. Eukaryotic cells display more internal structure than do 
prokaryotic cells. Components within the interior of a eukaryotic cell, most notably the nucleus, are defined 
by membranes. [Micrographs: (A) Courtesy of I. D. J. Burdett and R. G. E. Murray; (B) from P. C. Cross and K. L. Mercer, 
Cell and Tissue Ultrastructure: A Functional Perspective (W. H. Freeman and Company, 1993), p. 199.] Diagrams: 
(A and B) After H. Lodish et al., Molecular Cell Biology, 6th ed. (W. H. Freeman and Company, 2008), p. 3.]

There are two basic types of cells: eukaryotic cells and prokaryotic 
cells (Figure 1.10). The main difference between the two is the existence of 
membrane-enclosed compartments in eukaryotes and the absence of such com-
partments in prokaryotes. Prokaryotic cells, exemplified by the human gut bacte-
rium Escherichia coli, have a relatively simple structure. They are surrounded by 
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